Uniform strong consistency of a frontier estimator using kernel regression on high order moments

We consider the high order moments estimator of the frontier of a random pair introduced by Girard, S., Guillou, A., Stupfler, G. (2012). {\it Frontier estimation with kernel regression on high order moments}. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.

[1]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[2]  Anatoli Iouditski,et al.  L1-Optimal Nonparametric Frontier Estimation via Linear Programming , 2005 .

[3]  A. Tsybakov,et al.  Estimation of non-sharp support boundaries , 1995 .

[4]  Pierre Jacob,et al.  Frontier estimation with local polynomials and high power-transformed data , 2009, J. Multivar. Anal..

[5]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[8]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[9]  Mohamed Lemdani,et al.  Asymptotic properties of a conditional quantile estimator with randomly truncated data , 2009, J. Multivar. Anal..

[10]  M. Meerschaert Regular Variation in R k , 1988 .

[11]  John E. Kolassa,et al.  Asymptotic Normality , 2011, International Encyclopedia of Statistical Science.

[12]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[13]  P. Jacob,et al.  Estimating the edge of a Poisson process by orthogonal series , 1995 .

[14]  Stéphane Girard,et al.  Asymptotic normality of the L 1-error of a boundary estimator , 2006 .

[15]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[16]  L. Gardes,et al.  Estimation of the conditional tail index using a smoothed local Hill estimator , 2014 .

[17]  L. Simar,et al.  Robust nonparametric estimators of monotone boundaries , 2005 .

[18]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[19]  Uwe Einmahl,et al.  An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators , 2000 .

[20]  Stéphane Girard,et al.  Frontier estimation with kernel regression on high order moments , 2013, J. Multivar. Anal..

[21]  Wolfgang Härdle,et al.  Strong uniform consistency rates for estimators of conditional functionals , 1988 .

[22]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[23]  Dominique Deprins,et al.  Measuring Labor-Efficiency in Post Offices , 2006 .

[24]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[25]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[26]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[27]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[28]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[29]  S. Girard,et al.  Frontier estimation via kernel regression on high power-transformed data , 2008, 1103.5956.

[30]  W. Stute A Law of the Logarithm for Kernel Density Estimators , 1982 .