Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water.

We present the first comparative molecular dynamics investigation for a dodecylphosphocholine (DPC) micelle performed in condensed phase using the CHARMM36, GROMOS53A6, GROMOS54A7, and GROMOS53A6/Berger force fields and a set of parameters developed anew. Our potential consists of newly derived RESP atomic charges, which are associated with the Amber99SB force field developed for proteins. This new potential is expressly designed for simulations of peptides and transmembrane proteins in a micellar environment. To validate this new ensemble, molecular dynamics simulations of a DPC micelle composed of 54 monomers were carried out in explicit water using a "self-assembling" approach. Characteristic micellar properties such as aggregation kinetic, volume, size, shape, surface area, internal structure, surfactant conformation, and hydration were thoroughly examined and compared with experiments. Derived RESP charge values combined with parameters taken from Amber99SB reproduce reasonably well important structural properties and experimental data compared to the other tested force fields. However, the headgroup and alkyl chain conformations or the micelle hydration simulated with the Amber99SB force field display some differences. In particular, we show that Amber99SB slightly overestimates the trans population of the alkyl Csp(3)-Csp(3)-Csp(3)-Csp(3) dihedral angle (i.e., CCCC) and reduces the flexibility of the DPC alkyl chain. In agreement with experiments and previously published studies, the DPC micelle shows a slightly ellipsoidal shape with a radius of gyration of ∼17 Å for the different potentials evaluated. The surface of contact between the DPC headgroup and water molecules represents between 70% and 80% of the total micelle surface independently of the force field considered. Finally, molecular dynamics simulations show that water molecules form various hydrogen-bond patterns with the surfactant headgroup, as noted previously for phospholipids with a phosphatidylcholine headgroup.

[1]  Callum J. Dickson,et al.  GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid , 2012 .

[2]  Joakim P. M. Jämbeck,et al.  An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. , 2012, Journal of chemical theory and computation.

[3]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[4]  A. Panagiotopoulos,et al.  Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates. , 2012, The journal of physical chemistry. B.

[5]  Alfons Geiger,et al.  Volumetric properties of hydrated peptides: Voronoi-Delaunay analysis of molecular simulation runs. , 2011, The journal of physical chemistry. B.

[6]  C. Cézard,et al.  Molecular dynamics studies of native and substituted cyclodextrins in different media: 1. Charge derivation and force field performances. , 2011, Physical chemistry chemical physics : PCCP.

[7]  A. Arnold,et al.  Choosing membrane mimetics for NMR structural studies of transmembrane proteins. , 2011, Biochimica et biophysica acta.

[8]  Shiyong Liu,et al.  Kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system investigated by stopped-flow temperature jump. , 2011, Physical chemistry chemical physics : PCCP.

[9]  M. Vincent,et al.  Transverse and tangential orientation of predicted transmembrane fragments 4 and 10 from the human multidrug resistance protein (hMRP1/ABCC1) in membrane mimics , 2011, European Biophysics Journal.

[10]  S. Khalid,et al.  Exploring the conformational dynamics and membrane interactions of PorB from C. glutamicum: a multi-scale molecular dynamics simulation study. , 2011, Biochimica et biophysica acta.

[11]  Piotr Cieplak,et al.  R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments , 2011, Nucleic Acids Res..

[12]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[13]  Berk Hess,et al.  3₁₀-helix conformation facilitates the transition of a voltage sensor S4 segment toward the down state. , 2011, Biophysical journal.

[14]  Sudip Roy,et al.  Headgroup mediated water insertion into the DPPC bilayer: a molecular dynamics study. , 2011, The journal of physical chemistry. B.

[15]  Alexander D. MacKerell,et al.  Molecular simulations of dodecyl-β-maltoside micelles in water: influence of the headgroup conformation and force field parameters. , 2011, The journal of physical chemistry. B.

[16]  A. Mark,et al.  The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action , 2011, European Biophysics Journal.

[17]  C. Lorenz,et al.  On the hydration of the phosphocholine headgroup in aqueous solution. , 2010, The Journal of chemical physics.

[18]  Oliver F. Lange,et al.  Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. , 2010, Biophysical journal.

[19]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[20]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[21]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[22]  K. Zangger,et al.  Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape. , 2010, The journal of physical chemistry. B.

[23]  Alan E Mark,et al.  Turning the growth hormone receptor on: Evidence that hormone binding induces subunit rotation , 2010, Proteins.

[24]  E. Pai,et al.  An iris-like mechanism of pore dilation in the CorA magnesium transport system. , 2010, Biophysical journal.

[25]  J. Kindt,et al.  Molecular dynamics simulations of glycocholate-oleic acid mixed micelle assembly. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[26]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[27]  C. Sanders,et al.  Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. , 2009, Progress in nuclear magnetic resonance spectroscopy.

[28]  M. Marchi,et al.  Atomistic simulations of spontaneous formation and structural properties of linoleic acid micelles in water , 2009 .

[29]  Chris H Rycroft,et al.  VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.

[30]  A. Panagiotopoulos,et al.  Implicit solvent models for micellization of ionic surfactants. , 2008, The journal of physical chemistry. B.

[31]  L. Degrève,et al.  Study of the antimicrobial peptide indolicidin and a mutant in micelle medium by molecular dynamics simulation. , 2008, Genetics and molecular research : GMR.

[32]  J. Devoisselle,et al.  Density functional theory-based conformational analysis of a phospholipid molecule (dimyristoyl phosphatidylcholine). , 2008, The journal of physical chemistry. B.

[33]  Thomas Arnold,et al.  The Use of Detergents to Purify Membrane Proteins , 2008, Current protocols in protein science.

[34]  Miguel Jorge,et al.  Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  R. Böckmann,et al.  Biomolecular simulations of membranes: physical properties from different force fields. , 2008, The Journal of chemical physics.

[36]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[37]  Brian C. Stephenson,et al.  Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution. , 2008, The journal of physical chemistry. B.

[38]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[39]  M. Girvin,et al.  Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. , 2007, Biochimica et biophysica acta.

[40]  C. O. Mellet,et al.  Multi-mannosides based on a carbohydrate scaffold: synthesis, force field development, molecular dynamics studies, and binding affinities for lectin Con A. , 2007, The Journal of organic chemistry.

[41]  S. Doniach,et al.  Size and shape of detergent micelles determined by small-angle X-ray scattering. , 2007, The journal of physical chemistry. B.

[42]  Balázs Jójárt,et al.  Performance of the general amber force field in modeling aqueous POPC membrane bilayers , 2007, J. Comput. Chem..

[43]  A. Cordomí,et al.  Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. , 2007, Journal of Physical Chemistry B.

[44]  G. Privé,et al.  Detergents for the stabilization and crystallization of membrane proteins. , 2007, Methods.

[45]  Kenneth J. Beers,et al.  Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. , 2007, Journal of Physical Chemistry B.

[46]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[47]  S. M. Cowsik,et al.  Solution structure of amphibian tachykinin Uperolein bound to DPC micelles. , 2006, Journal of structural biology.

[48]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[49]  J. Penfold,et al.  The structure of zwitterionic phosphocholine surfactant monolayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[50]  Carlos J. V. Simões,et al.  Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides , 2006 .

[51]  Peter J Bond,et al.  Insertion and assembly of membrane proteins via simulation. , 2006, Journal of the American Chemical Society.

[52]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[53]  A. Semenov,et al.  On the Theory of Micellization Kinetics , 2005 .

[54]  Themis Lazaridis,et al.  Implicit solvent simulations of DPC micelle formation. , 2005, The journal of physical chemistry. B.

[55]  H. Khandelia,et al.  Molecular dynamics simulations of the helical antimicrobial peptide ovispirin-1 in a zwitterionic dodecylphosphocholine micelle: insights into host-cell toxicity. , 2005, The journal of physical chemistry. B.

[56]  Vijay S. Pande,et al.  Empirical force‐field assessment: The interplay between backbone torsions and noncovalent term scaling , 2005, J. Comput. Chem..

[57]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.

[58]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[59]  Peter J Bond,et al.  MD simulations of spontaneous membrane protein/detergent micelle formation. , 2004, Journal of the American Chemical Society.

[60]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[61]  P. Balgavý,et al.  Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods , 2004, European Biophysics Journal.

[62]  M. Klein,et al.  Hydrogen Bonding Structure and Dynamics of Water at the Dimyristoylphosphatidylcholine Lipid Bilayer Surface from a Molecular Dynamics Simulation , 2004 .

[63]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[64]  R. Pastor,et al.  Micelle-bound conformation of a hairpin-forming peptide: combined NMR and molecular dynamics study. , 2002, Biopolymers.

[65]  Chrystal D. Bruce,et al.  Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: Micellar structural characteristics and counterion distribution , 2002 .

[66]  E. Carballo,et al.  Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixturesElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b104891k/ , 2001 .

[67]  C. Pierleoni,et al.  Molecular Dynamics Study of Spherical Aggregates of Chain Molecules at Different Degrees of Hydrophilicity in Water Solution , 2001 .

[68]  T. Róg,et al.  Effects of phospholipid unsaturation on the membrane/water interface: a molecular simulation study. , 2001, Biophysical journal.

[69]  P. V. Balaji,et al.  Dynamics of Ganglioside Headgroup in Lipid Environment: Molecular Dynamics Simulations of GM1 Embedded in Dodecylphosphocholine Micelle , 2001 .

[70]  Alan E. Mark,et al.  Molecular dynamics simulation of the kinetics of spontaneous micelle formation , 2000 .

[71]  J. Møller,et al.  Interaction of membrane proteins and lipids with solubilizing detergents. , 2000, Biochimica et biophysica acta.

[72]  D. van der Spoel,et al.  Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: Micellar structure and chain relaxation , 2000 .

[73]  R. Pastor,et al.  Molecular Dynamics Simulations of Octyl Glucoside Micelles: Structural Properties , 2000 .

[74]  C Baldock,et al.  Test liquids for quantitative MRI measurements of self‐diffusion coefficient in vivo , 2000, Magnetic resonance in medicine.

[75]  P. Coveney,et al.  Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants , 1999, cond-mat/9911013.

[76]  T. Wymore,et al.  Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution , 1999 .

[77]  Jerry Tsai,et al.  The packing density in proteins: standard radii and volumes. , 1999, Journal of molecular biology.

[78]  T. C. Wong,et al.  Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion. , 1998, Biophysical journal.

[79]  A. Kusumi,et al.  Hydrogen Bonding of Water to Phosphatidylcholine in the Membrane As Studied by a Molecular Dynamics Simulation: Location, Geometry, and Lipid-Lipid Bridging via Hydrogen-Bonded Water , 1997 .

[80]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[81]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[82]  E. Paci,et al.  Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[84]  T. Aminabhavi,et al.  Density and Refractive Index of the Binary Mixtures of Cyclohexane with Dodecane, Tridecane, Tetradecane, and Pentadecane at (298.15, 303.15, and 308.15) K , 1996 .

[85]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[86]  Peter A. Kollman,et al.  Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..

[87]  C. R. Watts,et al.  The use of dodecylphosphocholine micelles in solution NMR. , 1995, Journal of magnetic resonance. Series B.

[88]  E. Jakobsson,et al.  Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. , 1995, Biophysical journal.

[89]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[90]  P. Kollman,et al.  A second generation force field for the simulation of proteins , 1995 .

[91]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[92]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[93]  Alexander D. MacKerell Molecular Dynamics Simulation Analysis of a Sodium Dodecyl Sulfate Micelle in Aqueous Solution: Decreased Fluidity of the Micelle Hydrocarbon Interior , 1995 .

[94]  E. Sackmann,et al.  Conformational changes of the lecithin headgroup in monolayers at the air/water interface , 1994, European Biophysics Journal.

[95]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[96]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[97]  H. Akutsu,et al.  Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations. , 1991, Biochemistry.

[98]  E. Sackmann,et al.  Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. , 1991, Biophysical journal.

[99]  J. Callis,et al.  Conformation of the hydrocarbon chains of sodium dodecyl sulfate molecules in micelles: an FTIR study , 1989 .

[100]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[101]  K. D. Luks,et al.  THE ISOTHERMAL COMPRESSIBILITY OF n-PARAFFIN LIQUIDS AT LOW PRESSURES , 1987 .

[102]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[103]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[104]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[105]  J. Seelig,et al.  Hydration of Escherichia coli lipids. Deuterium T1 relaxation time studies of phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. , 1983, Biochimica et biophysica acta.

[106]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[107]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[108]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[109]  H. Hauser,et al.  Polar group conformation of phosphatidylcholine. Effect of solvent and aggregation. , 1980, Biochemistry.

[110]  K. Wüthrich,et al.  Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. , 1979, Biochimica et biophysica acta.

[111]  J. Seelig,et al.  Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. , 1977, Biochimica et biophysica acta.

[112]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[113]  G. de Haas,et al.  Studies on phospholipase A and its zymogen from porcine pancreas. 3. Action of the enzyme on short-chain lecithins. , 1970, Biochimica et biophysica acta.

[114]  G. S. Parks,et al.  Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. , 1954 .

[115]  S. Keller,et al.  Alpha-helical transmembrane peptides: a "divide and conquer" approach to membrane proteins. , 2010, Chemistry and physics of lipids.

[116]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[117]  Alexander D. MacKerell,et al.  Comparison of protein force fields for molecular dynamics simulations. , 2008, Methods in molecular biology.

[118]  J. Šponer,et al.  Molecular Dynamics Simulations of Nucleic Acids , 2006 .

[119]  G. Marchetti Modélisation moléculaire du phénomène du transport du calcium dans la protéine ATPase-Ca2+ (SERCA1a) : une première étude , 2006 .

[120]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[121]  P A Kollman,et al.  Molecular dynamics simulation of nucleic acids. , 2000, Annual review of physical chemistry.

[122]  W. Marbach,et al.  Self- and Mutual Diffusion Coefficients of some n-Alkanes at Elevated Temperatures and Pressures , 1996 .

[123]  E. Aicart,et al.  Isothermal compressibility of cyclohexane-n-decane, cyclohexane-n-dodecane, and cyclohexane-n-tetradecane , 1981 .

[124]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[125]  R. E. Schramm,et al.  Density and crystallinity measurements of liquid and solid n-undecane, n-tridecane, and o-xylene from 200 to 350.deg.K , 1976 .