Valuing American-style options under the CEV model: an integral representation based method

This article derives a new integral representation of the early exercise boundary for valuing American-style options under the constant elasticity of variance (CEV) model. An important feature of this novel early exercise boundary characterization is that it does not involve the usual (time) recursive procedure that is commonly employed in the so-called integral representation approach well known in the literature. Our non-time recursive pricing method is shown to be analytically tractable under the local volatility CEV process and the numerical experiments demonstrate its robustness and accuracy.

[1]  I. Kim,et al.  An alternative approach to the valuation of American options and applications , 1996 .

[2]  Guofu Zhou,et al.  On the Rate of Convergence of Discrete‐Time Contingent Claims , 2000 .

[3]  Marti G. Subrahmanyam,et al.  Pricing and Hedging American Options: A Recursive Integration Method , 1995 .

[4]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[5]  S. Beckers The Constant Elasticity of Variance Model and Its Implications For Option Pricing , 1980 .

[6]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[7]  Vadim Linetsky,et al.  A jump to default extended CEV model: an application of Bessel processes , 2006, Finance Stochastics.

[8]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[9]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[10]  Bong-Gyu Jang,et al.  A simple iterative method for the valuation of American options , 2013 .

[11]  San-Lin Chung,et al.  Generalized Cox-Ross-Rubinstein Binomial Models , 2007, Manag. Sci..

[12]  I. Kim The Analytic Valuation of American Options , 1990 .

[13]  Vadim Linetsky,et al.  Pricing and Hedging Path-Dependent Options Under the CEV Process , 2001, Manag. Sci..

[14]  K. Krishnamoorthy,et al.  Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t , 2003, Comput. Stat. Data Anal..

[15]  João Pedro Vidal Nunes,et al.  Pricing and static hedging of American-style options under the jump to default extended CEV model , 2013 .

[16]  H. Geman,et al.  Modeling Commodity Prices under the CEV Model , 2008, The Journal of Alternative investments.

[17]  Jens Carsten Jackwerth,et al.  Recovering Stochastic Processes from Option Prices , 2012 .

[18]  Etienne Chevalier,et al.  CRITICAL PRICE NEAR MATURITY FOR AN AMERICAN OPTION ON A DIVIDEND‐PAYING STOCK IN A LOCAL VOLATILITY MODEL , 2005 .

[19]  D. Madan,et al.  Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options , 2000 .

[20]  José Carlos Dias,et al.  On the computation of option prices and Greeks under the CEV model , 2013 .

[21]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[22]  I. Karatzas On the pricing of American options , 1988 .

[23]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[24]  Thomas Little,et al.  A new integral representation of the early exercise boundary for American put options , 2000 .

[25]  João Pedro Vidal Nunes,et al.  The Early Exercise Boundary Under the Jump to Default Extended CEV Model , 2020 .

[26]  San-Lin Chung,et al.  Static Hedging and Pricing American Options , 2008 .

[27]  Patrick J. Dennis,et al.  Risk-Neutral Skewness: Evidence from Stock Options , 2002 .

[28]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[29]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[30]  João Pedro Vidal Nunes,et al.  Pricing and static hedging of American-style knock-in options on defaultable stocks , 2015 .

[31]  G. Barone-Adesi The saga of the American put , 2005 .

[32]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[33]  The Binomial CEV Model and the Greeks , 2017 .

[34]  G. Peskir ON THE AMERICAN OPTION PROBLEM , 2005 .

[35]  David C. Emanuel,et al.  Further Results on the Constant Elasticity of Variance Call Option Pricing Model , 1982, Journal of Financial and Quantitative Analysis.

[36]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .

[37]  S. Jacka Optimal Stopping and the American Put , 1991 .

[38]  Guojun Wu,et al.  Asymmetric Volatility and Risk in Equity Markets , 1997 .

[39]  João Pedro Vidal Nunes,et al.  Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model , 2015 .

[40]  Jin-Wook Choi,et al.  Pricing options on agricultural futures: An application of the constant elasticity of variance option pricing model , 1985 .

[41]  M. Broadie,et al.  Option Pricing: Valuation Models and Applications , 2004 .

[42]  Mark Broadie,et al.  ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications , 2004, Manag. Sci..

[43]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[44]  Mark Schroder Computing the Constant Elasticity of Variance Option Pricing Formula , 1989 .

[45]  L. Ballestra,et al.  Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley , 2015 .

[46]  San-Lin Chung,et al.  On the Rate of Convergence of Binomial Greeks , 2011 .

[47]  J. Cox The Constant Elasticity of Variance Option Pricing Model , 1996 .

[48]  João Pedro Vidal Nunes,et al.  Pricing real options under the constant elasticity of variance diffusion , 2011 .

[49]  João Pedro Vidal Nunes Pricing American Options under the Constant Elasticity of Variance Model and Subject to Bankruptcy , 2009, Journal of Financial and Quantitative Analysis.

[50]  Yisong S. Tian,et al.  Pricing Lookback and Barrier Options under the CEV Process , 1999, Journal of Financial and Quantitative Analysis.

[51]  Weidong Tian,et al.  The Valuation of American Options for a Class of Diffusion Processes , 2002, Manag. Sci..

[52]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[53]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[54]  R. Myneni The Pricing of the American Option , 1992 .