Asymmetry of the Brain: Development and Implications.

Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

[1]  G. Ehret Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls , 1987, Nature.

[2]  Cathy J. Price,et al.  A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading , 2012, NeuroImage.

[3]  M. Diamond,et al.  Age-related morphologic differences in the rat cerebral cortex and hippocampus: Male-female; right-left , 1983, Experimental Neurology.

[4]  A. Lindell,et al.  Continuities in Emotion Lateralization in Human and Non-Human Primates , 2013, Front. Hum. Neurosci..

[5]  Hitoshi Okamoto,et al.  Identification of the Zebrafish Ventral Habenula As a Homolog of the Mammalian Lateral Habenula , 2010, The Journal of Neuroscience.

[6]  Robert W. Taylor,et al.  Asymmetric Inhibition of Ulk2 Causes Left–Right Differences in Habenular Neuropil Formation , 2011, The Journal of Neuroscience.

[7]  M. Roussigné,et al.  Pitx2c ensures habenular asymmetry by restricting parapineal cell number , 2014, Development.

[8]  S. Shimeld,et al.  The evolution of left–right asymmetry in chordates , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  M. Concha,et al.  Mechanisms of directional asymmetry in the zebrafish epithalamus. , 2009, Seminars in cell & developmental biology.

[10]  Chris Chee,et al.  Left-Handedness Among a Community Sample of Psychiatric Outpatients Suffering From Mood and Psychotic Disorders , 2013 .

[11]  Siegfried Kasper,et al.  Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET , 2009, NeuroImage.

[12]  F H Previc,et al.  A general theory concerning the prenatal origins of cerebral lateralization in humans. , 1991, Psychological review.

[13]  Stephen W. Wilson,et al.  Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus , 2005, Current Biology.

[14]  S. Stieger,et al.  Latent variable analysis indicates that seasonal anisotropy accounts for the higher prevalence of left-handedness in men , 2014, Cortex.

[15]  J. Buxbaum,et al.  Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Andrew Simmons,et al.  A Lateralized Brain Network for Visuospatial Attention , 2012 .

[17]  D. Constam,et al.  SPC4/PACE4 regulates a TGFbeta signaling network during axis formation. , 2000, Genes & development.

[18]  Richard W. Byrne,et al.  Evolutionary origins of human handedness: evaluating contrasting hypotheses , 2013, Animal Cognition.

[19]  G. Vallortigara,et al.  Lateralization of detour behaviour in poeciliid fish: The effect of species, gender and sexual motivation , 1998, Behavioural Brain Research.

[20]  S. Ryu,et al.  Habenula Circuit Development: Past, Present, and Future , 2012, Front. Neurosci..

[21]  M. Kemali,et al.  The asymmetry of the habenular nuclei of female and male frogs in spring and in winter , 1990, Brain Research.

[22]  M. Carl,et al.  The Wnt/beta-catenin signaling pathway establishes neuroanatomical asymmetries and their laterality , 2013, Mechanisms of Development.

[23]  J. Fagard Early development of hand preference and language lateralization: are they linked, and if so, how? , 2013, Developmental psychobiology.

[24]  Y. Kuan,et al.  Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target , 2005, Development.

[25]  Stephen W. Wilson,et al.  Encoding asymmetry within neural circuits , 2012, Nature Reviews Neuroscience.

[26]  B. Peers,et al.  Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade , 2016, PloS one.

[27]  Steve D. M. Brown,et al.  Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits , 2008, Current Biology.

[28]  Onur Güntürkün,et al.  Neuroscience and Biobehavioral Reviews the Ontogenesis of Language Lateralization and Its Relation to Handedness , 2022 .

[29]  Laura N. Vandenberg,et al.  A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. , 2013, Developmental biology.

[30]  M. Gazzaniga Forty-five years of split-brain research and still going strong , 2005, Nature Reviews Neuroscience.

[31]  Stephen W. Wilson,et al.  Wnt/Axin1/β-Catenin Signaling Regulates Asymmetric Nodal Activation, Elaboration, and Concordance of CNS Asymmetries , 2007, Neuron.

[32]  E. Ringelstein,et al.  Handedness and hemispheric language dominance in healthy humans. , 2000, Brain : a journal of neurology.

[33]  I. Savic Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes , 2014, Front. Neurosci..

[34]  G. Vallortigara,et al.  Population lateralisation and social behaviour: A study with 16 species of fish , 2000, Laterality.

[35]  G. Geffen,et al.  Opposite Effects of Androgen Receptor CAG Repeat Length on Increased Risk of Left-Handedness in Males and Females , 2005, Behavior genetics.

[36]  M. Halpern,et al.  Leaning to the left: laterality in the zebrafish forebrain , 2003, Trends in Neurosciences.

[37]  Süleyman Kaplan,et al.  Numerical density of pyramidal neurons in the hippocampus of 4 and 20 week old male and female rats , 2003 .

[38]  Stephen W. Wilson,et al.  Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli , 2014, Current Biology.

[39]  H. Demaree,et al.  Brain lateralization of emotional processing: historical roots and a future incorporating "dominance". , 2005, Behavioral and cognitive neuroscience reviews.

[40]  I. Mcmanus,et al.  Handedness , language dominance and aphasia : a genetic model , 2001 .

[41]  Peter G. Hepper,et al.  Handedness in the human fetus , 1991, Neuropsychologia.

[42]  E. Bisiach,et al.  Unilateral Neglect of Representational Space , 1978, Cortex.

[43]  P. Nikolova,et al.  Season of birth, Geschwind and Galaburda hypothesis, and handedness , 2011, Laterality.

[44]  Y. Kuan,et al.  Neuropilin asymmetry mediates a left-right difference in habenular connectivity , 2007, Development.

[45]  Stephen W. Wilson,et al.  fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses , 2005, Current Biology.

[46]  O. Hobert Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron , 2014, Genesis.

[47]  L. Rogers Asymmetry of brain and behavior in animals: Its development, function, and human relevance , 2014, Genesis.

[48]  Adam Claridge‐Chang,et al.  The Right Dorsal Habenula Limits Attraction to an Odor in Zebrafish , 2014, Current Biology.

[49]  Stephen W. Wilson,et al.  Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei , 2009, Development.

[50]  M. Jones-Gotman,et al.  fMRI of verbal and nonverbal memory processes in healthy and epileptogenic medial temporal lobes , 2012, Epilepsy & Behavior.

[51]  S. Scholpp,et al.  Pax6 regulates the formation of the habenular nuclei by controlling the temporospatial expression of Shh in the diencephalon in vertebrates , 2014, BMC Biology.

[52]  G. Karev Season of birth and parental age in right, mixed and left handers , 2008, Cortex.

[53]  T. Lepage,et al.  Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. , 2008, Developmental biology.

[54]  P. Broca Sur le siège de la faculté du langage articulé , 1865 .

[55]  Robert L. Collins,et al.  The effects of early experience on callosal development and functional lateralization in pigmental BALB/c mice , 1992, Behavioural Brain Research.

[56]  Chris Rorden,et al.  Non-spatially lateralized mechanisms in hemispatial neglect , 2003, Nature Reviews Neuroscience.

[57]  Stephen W. Wilson,et al.  A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain , 2000, Neuron.

[58]  T. Lepage,et al.  Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. , 2005, Developmental cell.

[59]  M. Dadda,et al.  Does brain asymmetry allow efficient performance of simultaneous tasks? , 2006, Animal Behaviour.

[60]  G. Vallortigara,et al.  Advantages of having a lateralized brain , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  H. Hamada,et al.  Situs inversus and ciliary abnormalities: 20 years later, what is the connection? , 2015, Cilia.

[62]  C. Thomas-Antérion,et al.  Marc Dax and the discovery of the lateralisation of language in the left cerebral hemisphere. , 2011, Revue neurologique.

[63]  Stephen W. Wilson,et al.  Breaking symmetry: The zebrafish as a model for understanding left‐right asymmetry in the developing brain , 2012, Developmental neurobiology.

[64]  M. Halpern,et al.  Tbx2b is required for the development of the parapineal organ , 2008, Development.

[65]  M. Dragovic,et al.  Season of birth and handedness in Serbian high school students , 2008, Annals of General Psychiatry.

[66]  C. Viebahn,et al.  The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. , 1999, Development.

[67]  Stephen W. Wilson,et al.  Tcf7l2 Is Required for Left-Right Asymmetric Differentiation of Habenular Neurons , 2014, Current Biology.

[68]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[69]  O. Güntürkün,et al.  FOXP2 variation modulates functional hemispheric asymmetries for speech perception , 2013, Brain and Language.

[70]  Marc Joliot,et al.  Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness , 2014, PloS one.

[71]  V S Caviness,et al.  Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. , 2004, Brain : a journal of neurology.

[72]  N. Kenny,et al.  Right across the tree of life: The evolution of left–right asymmetry in the Bilateria , 2014, Genesis.

[73]  J. Rodríguez-Rey,et al.  Pitx2 Participates in the Late Phase of the Pathway Controlling Left-Right Asymmetry , 1998, Cell.

[74]  T. Groothuis,et al.  The fighting hypothesis in combat: how well does the fighting hypothesis explain human left‐handed minorities? , 2013, Annals of the New York Academy of Sciences.

[75]  H. Caci,et al.  Season of birth and handedness in young adults , 2012, Laterality.

[76]  M. Hirata,et al.  Neuroimaging study on brain asymmetries in situs inversus totalis , 2010, Journal of the Neurological Sciences.

[77]  Stephen W. Wilson,et al.  Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality , 2003, Neuron.

[78]  Shigeru Watanabe,et al.  Left−Right Asymmetry Defect in the Hippocampal Circuitry Impairs Spatial Learning and Working Memory in iv Mice , 2010, PloS one.

[79]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[80]  M. Srinivasan,et al.  Lateralization of Olfaction in the Honeybee Apis mellifera , 2006, Current Biology.

[81]  C. Scharff,et al.  Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X , 2007, PLoS biology.

[82]  G. Vallortigara,et al.  Complementary right and left hemifield use for predatory and agonistic behaviour in toads , 1998, Neuroreport.

[83]  B. Harfe,et al.  Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish , 2014, Genesis.

[84]  K M O'Craven,et al.  Structural and functional brain asymmetries in human situs inversus totalis , 1999, Neurology.

[85]  H. Saiga,et al.  Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. , 2011, Developmental biology.

[86]  P. Dayan,et al.  The habenula encodes negative motivational value associated with primary punishment in humans , 2014, Proceedings of the National Academy of Sciences.

[87]  Michael C. Corballis,et al.  Left Brain, Right Brain: Facts and Fantasies , 2014, PLoS biology.

[88]  H. Kawanishi,et al.  HrNodal, the ascidian nodal-related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx , 2002, Development Genes and Evolution.

[89]  David M. Evans,et al.  Common Variants in Left/Right Asymmetry Genes and Pathways Are Associated with Relative Hand Skill , 2013, PLoS genetics.

[90]  Angelo Bisazza,et al.  Lines of Danio rerio selected for opposite behavioural lateralization show differences in anatomical left–right asymmetries , 2009, Behavioural Brain Research.

[91]  C. Walsh,et al.  Molecular approaches to brain asymmetry and handedness , 2006, Nature Reviews Neuroscience.

[92]  Stephen W. Wilson,et al.  An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry , 2009, Neuron.

[93]  Stian Reimers,et al.  Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: The BBC internet study , 2006, Brain and Cognition.

[94]  A. Monaco,et al.  A forkhead-domain gene is mutated in a severe speech and language disorder , 2001, Nature.

[95]  M. Rebagliati,et al.  The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry , 2003, Development.

[96]  R. Sperry,et al.  Some functional effects of sectioning the cerebral commissures in man* , 1962, Proceedings of the National Academy of Sciences.

[97]  Juan Carlos Izpisúa Belmonte,et al.  Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. , 2000, Development.

[98]  O. Güntürkün,et al.  UK Laterality : Asymmetries of Body , Brain and Cognition , 2012 .

[99]  Subhamoy Pal,et al.  Guts and glory: balancing microbes and the immune response. , 2005, Developmental cell.

[100]  H. Yost,et al.  FGF signaling is required for brain left-right asymmetry and brain midline formation. , 2014, Developmental biology.

[101]  M. Annett Family handedness in three generations predicted by the right shift theory , 1979, Annals of human genetics.

[102]  Paul M. Thompson,et al.  Mapping connectivity in the developing brain , 2013, International Journal of Developmental Neuroscience.

[103]  M. Hendricks,et al.  Asymmetric innervation of the habenula in zebrafish , 2007, The Journal of comparative neurology.

[104]  Stephen W. Wilson,et al.  Asymmetry in the epithalamus of vertebrates , 2001, Journal of anatomy.

[105]  N. Geschwind,et al.  Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. , 1985, Archives of neurology.

[106]  Brenda Milner,et al.  Visual recognition and recall after right temporal-lobe excision in man , 1968 .

[107]  Shu-Yu Wu,et al.  Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus , 2014, Neural Development.

[108]  S. Fisher,et al.  The structure of innate vocalizations in Foxp2-deficient mouse pups , 2010, Genes, brain, and behavior.

[109]  Stephen W. Wilson,et al.  Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth , 2013, Development.

[110]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[111]  Dominique Pontier,et al.  Frequency-dependent maintenance of left handedness in humans , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[112]  L. Rogers,et al.  Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure , 2004, Experimental Brain Research.

[113]  Mark J. West,et al.  Asymmetry in the hippocampal region specific for one of two closely related species of wild mice , 1987, Brain Research.

[114]  William D. Hopkins,et al.  Planum temporale grey matter asymmetries in chimpanzees (Pan troglodytes), vervet (Chlorocebus aethiops sabaeus), rhesus (Macaca mulatta) and bonnet (Macaca radiata) monkeys , 2011, Neuropsychologia.

[115]  Tomomi Sato,et al.  Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. , 2007, Developmental cell.

[116]  S. Paracchini,et al.  The genetic relationship between handedness and neurodevelopmental disorders☆ , 2014, Trends in molecular medicine.

[117]  C. D. Fowler,et al.  Habenular α5* nicotinic receptor signaling controls nicotine intake , 2011, Nature.

[118]  M. Digilio,et al.  Shells and heart: Are human laterality and chirality of snails controlled by the same maternal genes? , 2010, American journal of medical genetics. Part A.

[119]  Jean-Baptiste Poline,et al.  Genetic Variants of FOXP2 and KIAA0319/TTRAP/THEM2 Locus Are Associated with Altered Brain Activation in Distinct Language-Related Regions , 2012, The Journal of Neuroscience.

[120]  Jean-Francois Mangin,et al.  Nurture versus Nature: Long-Term Impact of Forced Right-Handedness on Structure of Pericentral Cortex and Basal Ganglia , 2010, The Journal of Neuroscience.

[121]  O. Güntürkün,et al.  Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon's (Columba livia) visual system. , 1999, Behavioral neuroscience.

[122]  L. Rogers Light experience and asymmetry of brain function in chickens , 1982, Nature.

[123]  Claire Wyart,et al.  Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway , 2013, Proceedings of the National Academy of Sciences.

[124]  J. Gamse,et al.  Fgf signaling governs cell fate in the zebrafish pineal complex , 2013, Development.

[125]  A. Oke,et al.  Hemispheric asymmetry of norepinephrine distribution in rat thalamus , 1980, Brain Research.

[126]  Emily J. Bain,et al.  Light and melatonin schedule neuronal differentiation in the habenular nuclei. , 2011, Developmental biology.

[127]  Marjorie LeMay,et al.  MORPHOLOGICAL CEREBRAL ASYMMETRIES OF MODERN MAN, FOSSIL MAN, AND NONHUMAN PRIMATE , 1976, Annals of the New York Academy of Sciences.

[128]  R. Andrew,et al.  Patterns of early embryonic light exposure determine behavioural asymmetries in zebrafish: A habenular hypothesis , 2009, Behavioural Brain Research.

[129]  Isabelle S. Häberling,et al.  Cerebral Asymmetries: Complementary and Independent Processes , 2010, PloS one.

[130]  G. Vallortigara,et al.  survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization , 2005, Behavioral and Brain Sciences.

[131]  B. Mazoyer,et al.  Revisiting human hemispheric specialization with neuroimaging , 2013, Trends in Cognitive Sciences.

[132]  J. Boulter,et al.  Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice , 2009, The Journal of Neuroscience.

[133]  M. Halpern,et al.  The parapineal mediates left-right asymmetry in the zebrafish diencephalon , 2003, Development.

[134]  Robert W. Taylor,et al.  Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development , 2010, Development.

[135]  I. Mcmanus,et al.  Symmetry and asymmetry in aesthetics and the arts , 2005, European Review.

[136]  M. Moal,et al.  Asymmetric distribution of brain monoamines in left- and right-handed mice , 1990, Brain Research.

[137]  Á. Miklósi,et al.  Behavioural Lateralisation of the Tetrapod Type in the Zebrafish (Brachydanio Rerio) , 1997, Physiology & Behavior.

[138]  G. Vallortigara,et al.  Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee , 2010, Behavioural Brain Research.

[139]  Bernard Mazoyer,et al.  Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing , 2006, NeuroImage.

[140]  J. C. Belmonte,et al.  Pitx2 determines left–right asymmetry of internal organs in vertebrates , 1998, Nature.

[141]  S. Higashijima,et al.  From the Olfactory Bulb to Higher Brain Centers: Genetic Visualization of Secondary Olfactory Pathways in Zebrafish , 2009, The Journal of Neuroscience.

[142]  D. Geschwind,et al.  LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia , 2007, Molecular Psychiatry.

[143]  L. Rogers Hand and paw preferences in relation to the lateralized brain , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[144]  H. van der Loos,et al.  Direction of handedness linked to hereditary asymmetry of a sensory system. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[145]  G. Vallortigara,et al.  A right antenna for social behaviour in honeybees , 2013, Scientific Reports.

[146]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[147]  D. Geschwind,et al.  Early Asymmetry of Gene Transcription in Embryonic Human Left and Right Cerebral Cortex , 2005, Science.

[148]  H. Hamada,et al.  Pitx2, a Bicoid-Type Homeobox Gene, Is Involved in a Lefty-Signaling Pathway in Determination of Left-Right Asymmetry , 1998, Cell.

[149]  Alex Martin,et al.  Two distinct forms of functional lateralization in the human brain , 2013, Proceedings of the National Academy of Sciences.

[150]  H. Yost,et al.  Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. , 2000, Development.

[151]  S. Martinez,et al.  The Development of the Thalamic Motor Learning Area Is Regulated by Fgf8 Expression , 2009, The Journal of Neuroscience.

[152]  L. Rogers Light input and the reversal of functional lateralization in the chicken brain , 1990, Behavioural Brain Research.

[153]  C. Scharff,et al.  FoxP2 Expression in Avian Vocal Learners and Non-Learners , 2004, The Journal of Neuroscience.

[154]  S. D. Glick,et al.  Lateral asymmetry of neurotransmitters in human brain , 1982, Brain Research.

[155]  Stephen W. Wilson,et al.  Brain asymmetry is encoded at the level of axon terminal morphology , 2008, Neural Development.

[156]  Cathleen Teh,et al.  The Habenula Prevents Helpless Behavior in Larval Zebrafish , 2010, Current Biology.

[157]  A. Morris,et al.  PCSK6 is associated with handedness in individuals with dyslexia , 2010, Human molecular genetics.

[158]  Marco Dadda,et al.  The costs of hemispheric specialization in a fish , 2009, Proceedings of the Royal Society B: Biological Sciences.

[159]  G. Vallortigara,et al.  From Antenna to Antenna: Lateral Shift of Olfactory Memory Recall by Honeybees , 2008, PloS one.

[160]  Q. Rougemont,et al.  The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain , 2015, Nature Communications.

[161]  H. Mitchison,et al.  Handedness and situs inversus in primary ciliary dyskinesia , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[162]  Jean-Francois Mangin,et al.  The effect of handedness on the shape of the central sulcus , 2012, NeuroImage.

[163]  G. Hammond,et al.  Handedness in schizophrenia: a quantitative review of evidence , 2005, Acta psychiatrica Scandinavica.

[164]  R. Anadón,et al.  Afferent and efferent connections of the parapineal organ in lampreys: A tract tracing and immunocytochemical study , 1999, The Journal of comparative neurology.

[165]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[166]  M. Halpern,et al.  Subnuclear development of the zebrafish habenular nuclei requires ER translocon function. , 2011, Developmental biology.

[167]  T. Préat,et al.  Neuroanatomy: Brain asymmetry and long-term memory , 2004, Nature.

[168]  M. Raymond,et al.  Why are some people left-handed? An evolutionary perspective , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[169]  G. Vallar Spatial hemineglect in humans , 1998, Trends in Cognitive Sciences.

[170]  I. Mcmanus,et al.  The Evolution of Human Handedness , 2013, Annals of the New York Academy of Sciences.

[171]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[172]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.