Collisional history of Ryugu’s parent body from bright surface boulders

[1]  D. Reuter,et al.  Exogenic basalt on asteroid (101955) Bennu , 2020 .

[2]  O. Mori,et al.  Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution , 2020, Science.

[3]  Hirotaka Sawada,et al.  Boulder size and shape distributions on asteroid Ryugu , 2019, Icarus.

[4]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[5]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[6]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[7]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[8]  T. Morota,et al.  Updated inflight calibration of Hayabusa2's optical navigation camera (ONC) for scientific observations during the cruise phase , 2018, Icarus.

[9]  E. Cloutis,et al.  Ultraviolet spectral reflectance of carbonaceous materials , 2018, Icarus.

[10]  G. Flynn,et al.  Physical properties of the stone meteorites: Implications for the properties of their parent bodies , 2017, Geochemistry.

[11]  T. Morota,et al.  Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft , 2017 .

[12]  Hiroki Senshu,et al.  NIRS3: The Near Infrared Spectrometer on Hayabusa2 , 2017 .

[13]  B. Marty,et al.  Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission , 2016 .

[14]  A. Tsuchiyama,et al.  Fragment shapes in impact experiments ranging from cratering to catastrophic disruption , 2016 .

[15]  Francis M. McCubbin,et al.  Early accretion of water in the inner solar system from a carbonaceous chondrite–like source , 2014, Science.

[16]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[17]  D. Plenz,et al.  powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions , 2013, PloS one.

[18]  Alessandro Morbidelli,et al.  THE ORIGIN OF ASTEROID 162173 (1999 JU3) , 2012 .

[19]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[20]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[21]  K. Tsiganis,et al.  THE ORIGIN OF ASTEROID 101955 (1999 RQ36) , 2010 .

[22]  Derek C. Richardson,et al.  Fragment properties at the catastrophic disruption threshold: The effect of the parent body’s internal structure , 2009, 0911.3937.

[23]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[24]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[25]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[26]  R. Binzel,et al.  Small Main-belt Asteroid Spectroscopic Survey, Phase II , 2004 .

[27]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[28]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[29]  Sho Sasaki,et al.  Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering , 2001, Nature.

[30]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999, astro-ph/9907117.

[31]  Alain Doressoundiram,et al.  The puzzling case of the Nysa-Polana family finally solved ? , 1998 .

[32]  W. Anderson,et al.  Shock wave equations of state of chondritic meteorites , 1998 .

[33]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[34]  M. Zolensky,et al.  Reflectance Spectra (UV-3 micrometers) of Heated Ivuna (CI) Meteorite and Newly Identified Thermally Metamorphosed CM Chondrites , 1996 .

[35]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[36]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[37]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[38]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[39]  Akira Fujiwara,et al.  Experimental study on the velocity of fragments in collisional breakup , 1980 .