MALA-within-Gibbs Samplers for High-Dimensional Distributions with Sparse Conditional Structure
暂无分享,去创建一个
[1] A. Chorin,et al. Stochastic Tools in Mathematics and Science , 2005 .
[2] Jonathan Goodman,et al. Random-walk interpretations of classical iteration methods , 1995 .
[3] Andrew M. Stuart,et al. Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .
[4] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[5] Gareth Roberts,et al. Optimal scalings for local Metropolis--Hastings chains on nonproduct targets in high dimensions , 2009, 0908.0865.
[6] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[7] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[8] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[9] Shiwei Lan,et al. Adaptive dimension reduction to accelerate infinite-dimensional geometric Markov Chain Monte Carlo , 2018, J. Comput. Phys..
[10] Tiangang Cui,et al. Scalable Optimization-Based Sampling on Function Space , 2019, SIAM J. Sci. Comput..
[11] A. Sokal,et al. Multi-grid Monte Carlo (II). Two-dimensional XY model , 1991 .
[12] Ulli Wolff,et al. Monte Carlo errors with less errors , 2004 .
[13] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[14] Nan Chen,et al. Rigorous Analysis for Efficient Statistically Accurate Algorithms for Solving Fokker-Planck Equations in Large Dimensions , 2017, SIAM/ASA J. Uncertain. Quantification.
[15] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[16] Yuxin Chen,et al. Accelerated Dimension-Independent Adaptive Metropolis , 2015, SIAM J. Sci. Comput..
[17] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[18] J. Bear,et al. Modeling groundwater flow and pollution , 1987 .
[19] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[20] Nan Chen,et al. Filtering Nonlinear Turbulent Dynamical Systems through Conditional Gaussian Statistics , 2016 .
[21] Tiangang Cui,et al. Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..
[22] Goodman,et al. Multigrid Monte Carlo method for lattice field theories. , 1986, Physical review letters.
[23] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[24] Alexandros Beskos. A stable manifold MCMC method for high dimensions , 2014 .
[25] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .
[26] N. Pillai,et al. A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.
[27] Matthias Morzfeld,et al. Localization for MCMC: sampling high-dimensional posterior distributions with local structure , 2017, J. Comput. Phys..
[28] Goodman,et al. Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.
[29] Colin Fox,et al. Fast Sampling in a Linear-Gaussian Inverse Problem , 2015, SIAM/ASA J. Uncertain. Quantification.
[30] Colin J. Cotter,et al. Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .
[31] Alicia A. Johnson,et al. Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition , 2009, 0903.0664.
[32] C. Fox,et al. Accelerated Gibbs sampling of normal distributions using matrix splittings and polynomials , 2015, 1505.03512.
[33] Mylène Bédard,et al. Hierarchical models: Local proposal variances for RWM-within-Gibbs and MALA-within-Gibbs , 2017, Comput. Stat. Data Anal..
[34] A. Weerts,et al. Data assimilation methods for Delft-FEWS , 2003 .
[35] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[36] Nan Chen,et al. Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification , 2018, Entropy.
[37] Sebastian J. Vollmer,et al. Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors , 2013, SIAM/ASA J. Uncertain. Quantification.
[38] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[39] G. Roberts,et al. OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.
[40] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[41] Youssef M. Marzouk,et al. Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..
[42] J. Møller,et al. Log Gaussian Cox Processes , 1998 .
[43] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[44] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[45] Ning Liu,et al. Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .
[46] Tiangang Cui,et al. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..
[47] Matthias Morzfeld,et al. Parameter estimation by implicit sampling , 2013, 1308.4640.
[48] Xin T. Tong,et al. Spatial Localization for Nonlinear Dynamical Stochastic Models for Excitable Media , 2019, Chinese Annals of Mathematics, Series B.