Finite equational bases for finite algebras in a congruence-distributive equational class*

[1]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[2]  G. Birkhoff,et al.  Lattice-ordered Rings , 1940 .

[3]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[4]  G. Birkhoff Subdirect unions in universal algebra , 1944 .

[5]  R. Lyndon Identities in two-valued calculi , 1951 .

[6]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[7]  R. C. Lyndon,et al.  Identities in finite algebras , 1954 .

[8]  G. Epstein The lattice theory of Post algebras , 1960 .

[9]  A. Pixley,et al.  Distributivity and permutability of congruence relations in equational classes of algebras , 1963 .

[10]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[11]  M. Powell,et al.  Identical relations in finite groups , 1964 .

[12]  A. Robinson Introduction to model theory and to the metamathematics of algebra , 1964 .

[13]  A. Troelstra On Intermediate Propositional Logics , 1965 .

[14]  B. Balkay,et al.  Introduction to lattice theory , 1965 .

[15]  Algebraic and equational semi-maximality; equational spectra. I , 1966 .

[16]  Cross varieties of groups , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  C. G. McKay On Finite Logics , 1967 .

[18]  B. Jonnson Algebras Whose Congruence Lattices are Distributive. , 1967 .

[19]  Translations and congruences in lattices , 1968 .

[20]  R. Pierce Introduction to the Theory of Abstract Algebras , 1968 .

[21]  Alfred Tarski,et al.  Equational Logic and Equational Theories of Algebras , 1968 .

[22]  C. C. Chen,et al.  Stone Lattices. I: Construction Theorems , 1969, Canadian Journal of Mathematics.

[23]  Alan Day,et al.  A Characterization of Modularity for Congruence Lattices of Algebras* , 1969, Canadian Mathematical Bulletin.

[24]  George Grätzer,et al.  Stone Lattices. II. Structure Theorems , 1969 .

[25]  Peter Perkins Bases for equational theories of semigroups , 1969 .

[26]  Primitive Länge und primitive Weite bei modularen Verbänden , 1969 .

[27]  Variety Invariants for Modular Lattices , 1969, Canadian Journal of Mathematics.

[28]  Charakterisierungen der primitiven Klassen arithmetischer Ringe , 1970 .

[29]  Donald Monk,et al.  On Equational Classes of Algebraic Versions of Logic I. , 1970 .

[30]  K. B. Lee,et al.  Equational Classes of Distributive Pseudo-Complemented Lattices , 1970, Canadian Journal of Mathematics.

[31]  R. Wille,et al.  Die primitiven Klassen arithmetischer Ringe , 1970 .

[32]  Ralph McKenzie Equational Bases for Lattice Theories. , 1970 .

[33]  J. Isbell Notes on ordered rings , 1971 .

[34]  G. Grätzer,et al.  Lattice Theory: First Concepts and Distributive Lattices , 1971 .

[35]  Robert W. Quackenbush Equational classes generated by finite algebras , 1971 .

[36]  Günter Bruns,et al.  Varieties of Orthomodular Lattices , 1971, Canadian Journal of Mathematics.

[37]  Identical relations in loops, I , 1971 .

[38]  K. A. Baker Equational axioms for classes of lattices , 1971 .

[39]  A. Mitschke,et al.  Implication algebras are 3-permutable and 3-distributive , 1971 .

[40]  Subdirectly irreducible modular p-algebras , 1972 .

[41]  R. McKenzie Equational bases and nonmodular lattice varieties , 1972 .

[42]  Über eine Konstruktion der distributiven pseudokomplementären Verbände , 1972 .

[43]  Walter Taylor,et al.  Residually small varieties , 1972 .

[44]  D. X. Hong Covering relations among lattice varieties , 1972 .

[45]  A. Pixley,et al.  Completeness in arithmetical algebras , 1972 .

[46]  P. M. Cohn,et al.  THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .

[47]  Primitive subsets of lattices , 1972 .

[48]  B. Jónsson Topics in universal algebra , 1972 .

[49]  Harry Lakser,et al.  Principal congruences of pseudocomplemented distributive lattices , 1973 .

[50]  George Grätzer,et al.  A nonassociative extension of the class of distributive lattices , 1973 .

[51]  R. Kruse Identities satisfied by a finite ring , 1973 .

[52]  R. P. Dilworth,et al.  Algebraic theory of lattices , 1973 .

[53]  R. Padmanabhan,et al.  Equational theories of algebras with distributive congruences , 1973 .

[54]  M. Makkai A proof of Baker’s finite-base theorem on equational classes generated by finite elements of congruence distributive varieties , 1973 .

[55]  C. Herrmann Weak (projective) radius and finite equational bases for classes of lattices , 1973 .

[56]  Laws in finite strictly simple loops , 1973 .

[57]  K. A. Baker,et al.  Primitive satisfaction and equational problems for lattices and other algebras , 1974 .

[58]  Identities and relations in commutative Moufang loops , 1974 .

[59]  S. Holland,et al.  The Current Interest in Orthomodular Lattices , 1975 .

[60]  A. Day Splitting algebras and a weak notion of projectivity , 1975 .

[61]  George F. McNulty,et al.  The decision problem for equational bases of algebras , 1976 .