Vortex cutting in superconductors

Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

[1]  G. Carapella,et al.  Superconducting slab in an antisymmetric magnetic field: Vortex–antivortex dynamics , 2015 .

[2]  Andreas Glatz,et al.  Flux cutting in high-T c superconductors , 2015 .

[3]  Tom Peterka,et al.  Detecting vortices in superconductors: extracting one-dimensional topological singularities from a discretized complex scalar field. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  W. Kwok,et al.  Rayleigh instability of confined vortex droplets in critical superconductors , 2014, Nature Physics.

[5]  De Witt L. Sumners,et al.  Conservation of writhe helicity under anti-parallel reconnection , 2014, Scientific Reports.

[6]  Andreas Glatz,et al.  Stable large-scale solver for Ginzburg-Landau equations for superconductors , 2014, J. Comput. Phys..

[7]  Chuanbing Cai,et al.  Vortex Configurations in a Mesoscopic Superconducting Ring Structure: A Finite-Element Analysis , 2014 .

[8]  G. Kindlmann,et al.  Helicity conservation by flow across scales in reconnecting vortex links and knots , 2014, Proceedings of the National Academy of Sciences.

[9]  F. Peeters,et al.  Current-induced cutting and recombination of magnetic superconducting vortex loops in mesoscopic superconductor-ferromagnet heterostructures , 2013 .

[10]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[11]  S. Zuccher,et al.  Quantum vortex reconnections , 2012, 1206.2498.

[12]  M. Ogren,et al.  Self-consistent Ginzburg–Landau theory for transport currents in superconductors , 2011, 1111.1314.

[13]  A. Campbell Flux cutting in superconductors , 2011 .

[14]  A. Malozemoff Electric power grid application requirements for superconductors , 2011 .

[15]  J. Clem Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire , 2011, 1102.3678.

[16]  M. P. Das,et al.  Attractive Vortex Interaction and the Intermediate-Mixed State of Superconductors , 2010, 1007.1107.

[17]  J.W. Bray,et al.  Superconductors in Applications; Some Practical Aspects , 2009, IEEE Transactions on Applied Superconductivity.

[18]  M. D. F.R.S. LVIII. On the physical character of the lines of magnetic force , 2009 .

[19]  W. A. Ortiz,et al.  Vortex-antivortex annihilation dynamics in a square mesoscopic superconducting cylinder , 2009, 0901.1829.

[20]  D. Lathrop,et al.  Characterization of reconnecting vortices in superfluid helium , 2008, Proceedings of the National Academy of Sciences.

[21]  Stephen K. Remillard,et al.  A Review of HTS Thick-Film Microwave Filter Technology , 2007 .

[22]  U. London,et al.  Vortex chains in anisotropic superconductors , 2005, cond-mat/0507022.

[23]  A. Kanda,et al.  Experimental evidence for giant vortex states in a mesoscopic superconducting disk. , 2004, Physical review letters.

[24]  A. Ustinov,et al.  Experimental test of a superconducting digital interface for vortex qubits , 2004 .

[25]  J. E. Evetts,et al.  Flux vortices and transport currents in type II superconductors , 2001 .

[26]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[27]  N. B. Kopnin Theory of Nonequilibrium Superconductivity , 2001 .

[28]  G. Blatter,et al.  Vortex collisions: crossing or recombination? , 2000, Physical review letters.

[29]  D. Nelson,et al.  Irreversibility, mechanical entanglement and thermal melting in superconducting vortex crystals with point impurities , 1996, cond-mat/9607142.

[30]  Genenko Helical instability of a magnetic flux line in a current-carrying superconducting film. , 1996, Physical review. B, Condensed matter.

[31]  Geshkenbein,et al.  Vortex entanglement and broken symmetry. , 1995, Physical review letters.

[32]  Y. Genenko Magnetic self-field entry into a current-carrying type-II superconductor. II. Helical vortices in a longitudinal magnetic field , 1995 .

[33]  Moore,et al.  Topological defects in the Abrikosov lattice of vortices in type-II superconductors. , 1994, Physical review. B, Condensed matter.

[34]  Moore,et al.  Energy cost associated with vortex crossing in superconductors. , 1994, Physical review. B, Condensed matter.

[35]  Machida,et al.  Direct simulation of the time-dependent Ginzburg-Landau equation for type-II superconducting thin film: Vortex dynamics and V-I characteristics. , 1993, Physical review letters.

[36]  Brandt Tilted and curved vortices in anisotropic superconducting films. , 1993, Physical review. B, Condensed matter.

[37]  Levine,et al.  Vortex reconnection in superfluid helium. , 1993, Physical review letters.

[38]  Brandt,et al.  Flux-line cutting in superconductors. , 1991, Physical review letters.

[39]  Nelson,et al.  Theory of melted flux liquids. , 1989, Physical review. B, Condensed matter.

[40]  E. Brandt,et al.  The Flux-Line Lattice in Type-II Superconductors† , 1987 .

[41]  J. Clem,et al.  Flux-line-cutting losses in type-II superconductors , 1982 .

[42]  Peter Wagenleithner Cutting of bent vortex lines , 1982 .

[43]  E. Brandt Longitudinal critical current in type II superconductors. II. Helical vortex instability near the surface , 1981 .

[44]  E. Brandt Longitudinal critical current in type II superconductors. I. Helical vortex instability in the bulk , 1981 .

[45]  E. Brandt,et al.  Flux-line cutting in type II superconductors , 1979 .

[46]  J. Clem Spiral-vortex expansion instability in type-II superconductors , 1977 .

[47]  V. Elesin,et al.  Time Dependent Ginzburg-Landau Equations for Modeling Vortices Dynamics in Type-II Superconductors with Defects Under A Transport Current , 2012 .

[48]  Fisher,et al.  Barriers to vortex-line cutting in high-Tc superconductors. , 1995, Physical review. B, Condensed matter.