Remote State Preparation via a Non-Maximally Entangled Channel
暂无分享,去创建一个
[1] C. H. Bennett,et al. Remote state preparation. , 2000, Physical review letters.
[2] H. Lo,et al. Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.
[3] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[4] H. Lo. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.
[5] L. Hardy,et al. Two-state teleportation , 2000 .
[6] M. Murao,et al. Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.
[7] A. Pati. Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.
[8] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[9] M. Horodecki,et al. General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.
[10] Guang-Can Guo,et al. Probabilistic teleportation and entanglement matching , 2000 .
[11] Hoi-Kwong Lo,et al. Classical Communication Cost of Entanglement Manipulation: Is Entanglement an Interconvertible Resource? , 1999, quant-ph/9902045.
[12] H. Weinfurter,et al. Experimental quantum teleportation , 1997, Nature.