Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments

Abstract A major change in oceanic sedimentation from mid-Cretaceous organic carbon-enriched deep-sea deposits to predominantly Upper Cretaceous oceanic red beds (CORBs), represented mainly by deep-sea red shales and marls, occurred during the Late Cretaceous and early Tertiary in the Tethys. A variety of earth processes such as organic carbon draw-down, tectonic, palaeoceanographic, eustatic and palaeoclimatic changes, or a combination of these could cause such a change, the main significance of which is that it demonstrates that the deep ocean basins ceased to be the preferential burial site for organic carbon. A compilation of available data on CORB occurrences, composition, and age indicate that: (1) CORBs are found in a broad geographic belt extending from the Caribbean across the central North Atlantic, southern and eastern Europe to Asia; with limited occurrences in the Indian ocean; (2) both the first and the last occurrences of CORBs are diachronous; (3) CORBs are of pelagic and hemipelagic origin and were deposited in a variety of environments from continental slope to deep oceanic basin, above and below the carbonate compensation depth (CCD); (4) total organic carbon (TOC) is mostly

[1]  S. Galeotti,et al.  The mid-Cenomanian Event: the Prelude to the OAE 2 , 2003 .

[2]  H. Jenkyns,et al.  New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere , 1999 .

[3]  I. P. Silva,et al.  Stratigraphy of the Chikkim and Fatu La formations in the Zangla and Zumlung units (Zanskar range, India) with comparisons to the Thakkhola region (central Nepal): mid-Cretaceous evolution of the Indian passive margin , 1992 .

[4]  J. A. Vera,et al.  La formación Capas Rojas: caracterización y génesis , 1999 .

[5]  W. Ryan,et al.  Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment , 1979 .

[6]  M. Wagreich Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria) , 1995 .

[7]  W. Lowrie,et al.  Timing of diagenetic haematite growth in red pelagic limestones from Gubbio (Italy) , 1982 .

[8]  Chengshan Wang,et al.  The Cenomanian–Turonian anoxic event in southern Tibet , 2001 .

[9]  K. Bąk Trace fossils and ichnofabrics in the Upper Cretaceous red deep-water marly deposits of the Pieniny Klippen Belt, Polish Carpathians , 1994 .

[10]  C. Hemleben,et al.  Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera , 1990 .

[11]  W. Sliter,et al.  Depositional environments of the Upper Cretaceous rocks in the northern part of the eastern Alps , 1981 .

[12]  W. Lowrie,et al.  The origin of the white beds below the Cretaceous-Tertiary boundary in the Gubbio section, Italy , 1990 .

[13]  A. Robertson,et al.  Mesozoic deep-water slope/rise sedimentation and volcanism along the North-Indian passive margin: evidence from the Karamba Complex, Indus suture zone (Western Ladakh Himalaya) , 1998 .

[14]  K. Bąk,et al.  Barnasiówka Radiolarian Shale Formation - a new lithostratigraphic unit in the Upper Cenomanian-lowermost Turonian of the Polish Outer Carpathians (Silesian Series) , 2001 .

[15]  W. Dean,et al.  Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary , 1988, Nature.

[16]  E. Appel,et al.  Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia , 1996 .

[17]  S. Voigt,et al.  Evidence for Late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeobiogeographic changes in Western and Central Europe , 2000, Journal of the Geological Society.

[18]  G. Einsele,et al.  Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet) , 1996 .

[19]  R. Norris,et al.  Jiggling the tropical thermostat in the Cretaceous hothouse , 2002 .

[20]  F. Robaszynski,et al.  Foraminiferes planctoniques du Cretace; commentaire de la zonation Europe-Mediterranee , 1995 .

[21]  B. Olszewska Foraminiferal biostratigraphy of the Polish Outer Carpathians: a record of basin geohistory , 1997 .

[22]  R. DeConto,et al.  Biogeographic distribution of late Early to Late Cretaceous rudist-reefs in the Mediterranean as climate indicators , 1999 .

[23]  G. Glasby Mineralogy, geochemistry, and origin of Pacific red clays: A review , 1991 .

[24]  E. Garzanti Sedimentary evolution and drowning of a passive margin shelf (Giumal Group; Zanskar Tethys Himalaya, India): palaeoenvironmental changes during final break-up of Gondwanaland , 1993, Geological Society, London, Special Publications.

[25]  A. Uchman,et al.  Biogenic structures of organics‐poor siliciclastic sediments: Examples from Paleogene variegated shales, Polish Carpathians , 1993 .

[26]  D. Seidov,et al.  Warm deep-water ocean conveyor during Cretaceous time , 2001 .

[27]  W. Lowrie,et al.  Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy III. Upper Cretaceous magnetic stratigraphy , 1977 .

[28]  K. Birkenmajer Stages of structural evolution of the Niedzica Castle tectonic window, Pieniny Klippen Belt, Carpathians, Poland , 1999 .

[29]  M. Arthur,et al.  Tectonic forcings of Maastrichtian ocean-climate evolution , 1999 .

[30]  H. Jenkyns,et al.  Cretaceous oceanic anoxic events: causes and consequences , 2007 .

[31]  E. Force Nature and Origin of Cretaceous Carbon‐rich Facies , 1983 .

[32]  W. Kuhnt Agglutinated foraminifera of western Mediterranean Upper Cretaceous pelagic limestones (Umbrian Apennines, Italy, and Betic Cordillera, southern Spain) , 1990 .

[33]  F. Bergerat,et al.  Tertiary deformation history from seismic section study and fault analysis in a former European Tethyan margin (the Mecsek–Villány area, SW Hungary) , 2002 .

[34]  I. P. Silva Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy II. Biostratigraphy , 1977 .

[35]  K. Bąk Planktonic foraminiferal biostratigraphy, Upper Cretaceous red pelagic deposits, Pieniny Klippen Belt, Carpathians , 1998 .

[36]  N. Görür,et al.  Cretaceous red pelagic carbonates of northern Turkey: their place in the opening history of the Black Sea , 1993 .

[37]  W. Lowrie,et al.  Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy V. Type section for the Late Cretaceous-Paleocene geomagnetic reversal time scale , 1977 .

[38]  F. Wezel,et al.  Depositional model for calcilutites: Scaglia Rossa limestones, Umbro-Marchean Apennines , 1984, Geological Society, London, Special Publications.

[39]  A. G. Fischer,et al.  Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology , 1977 .

[40]  F. Agterberg,et al.  A Triassic, Jurassic and Cretaceous Time Scale , 1995 .

[41]  H. Jenkyns Cretaceous anoxic events: from continents to oceans , 1980, Journal of the Geological Society.

[42]  E. Brosse,et al.  Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic , 1987, Geological Society, London, Special Publications.

[43]  Roque Aguado Merlo Nannofosiles del cretácico de la cordillera Bética , 1993 .

[44]  M. Cita,et al.  Anoxic Strata. (Book Reviews: Nature and Origin of Cretaceous Carbon-Rich Facies) , 1982 .

[45]  M. Bąk Uppermost Maastrichtian Radiolaria from the Magura Nappe deposits, Czech Outer Carpathians , 1999 .

[46]  S. Kadir,et al.  Colour origin of upper cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey , 1999 .

[47]  M. Eren,et al.  Kilop Cretaceous Hardground (Kale, Gümüshane, NE Turkey):description and origin , 2002 .

[48]  I. P. Silva,et al.  Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section, Gubbio, Italy , 1995 .

[49]  N. Oszczypko,et al.  Deep Water Agglutinated Foraminiferal Assemblages from Upper Cretaceous Red Shales of the Magura Nappe / Polish Outer Carpathians , 1990 .

[50]  R. Leckie,et al.  An Integrated Cretaceous Microfossil Biostratigraphy , 1995 .

[51]  H. Krenmayr Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria) , 1996 .

[52]  D. Bottjer,et al.  Sedimentary Environments and Facies , 1978 .

[53]  A. Robertson,et al.  Sedimentology and tectonic implications of the Lamayuru Complex: deep-water facies of the Indian passive margin, Indus Suture Zone, Ladakh Himalaya , 1993, Geological Society, London, Special Publications.

[54]  H. Summesberger,et al.  New crustacean records from the Late Campanian of the Gschliefgraben (Cretaceous, Austria) , 1999 .

[55]  W. Roggenthen,et al.  Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy IV. Upper Maastrichtian-Paleocene Magnetic Stratigraphy , 1977 .

[56]  C. Shields,et al.  Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model , 2002 .

[57]  J. Salaj,et al.  Turonian and Coniacian microbiostratigraphy of the Tethys regions on the basis of foraminifera and nannofossils , 1982 .

[58]  W. Berggren,et al.  GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION , 1995 .