Associative aggregation operators

An aggregation process occurs in many situations like in decision making or in statistical and economic measurement by aggregating expert’s opinions or by synthesizing judgements. So the typical situation is as follows:

[1]  R. Nelsen An Introduction to Copulas , 1998 .

[2]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[4]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[5]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[6]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[7]  R. J. Koch Note on weak cutpoints in clans , 1957 .

[8]  Yong-Ming Li,et al.  Weak uninorm aggregation operators , 2000, Inf. Sci..

[9]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  János Fodor,et al.  Aggregation Functions Defined by t-Norms and t-Conorms , 1998 .

[11]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[12]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[13]  E. Czogala,et al.  Associative monotonic operations in fuzzy set theory , 1984 .

[14]  M. Tokizawa,et al.  On Topological Semigroups , 1982 .

[15]  Joan Torrens,et al.  t-Operators , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[16]  B. Baets,et al.  On a generalization of the absorption equation. , 2000 .

[17]  János C. Fodor,et al.  An Extension of Fung-Fu's Theorem , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[19]  J. J. Deely,et al.  Joint Continuity of Monotonic Functions , 1969 .

[20]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[21]  Mitio Nagumo Über eine Klasse der Mittelwerte , 1930 .

[22]  K. S. Fu,et al.  AN AXIOMATIC APPROACH TO RATIONAL DECISION MAKING IN A FUZZY ENVIRONMENT , 1975 .

[23]  Bernard De Baets,et al.  The functional equations of Frank and Alsina for uninorms and nullnorms , 2001, Fuzzy Sets Syst..