Thermoelastic Plane Waves in Materials with a Microstructure Based on Micropolar Thermoelasticity with Two Temperature and Higher Order Time Derivatives
暂无分享,去创建一个
[1] M. Othman,et al. Mathematical model for a magneto-thermoelastic micropolar medium with temperature-dependent material moduli under the effect of mechanical strip load , 2021, Acta Mechanica.
[2] Ramón Quintanilla,et al. Uniqueness and exponential instability in a new two-temperature thermoelastic theory , 2021 .
[3] Aissa Guesmia,et al. Well-Posedness and Stability of a Generalized Micropolar Thermoelastic Body With Infinite Memory , 2021, 2102.00347.
[4] A. Abouelregal,et al. The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating , 2020 .
[5] Ravi Kumar,et al. Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity , 2020 .
[6] A. Abouelregal. On Green and Naghdi Thermoelasticity Model without Energy Dissipation with Higher Order Time Differential and Phase-Lags , 2020 .
[7] S. A. Hanoura,et al. Reflection of plane waves in magneto-micropolar thermoelastic medium with voids and one relaxation time due to gravity and two-temperature theory , 2020, Indian Journal of Physics.
[8] A. Abouelregal. A novel model of nonlocal thermoelasticity with time derivatives of higher order , 2020, Mathematical Methods in the Applied Sciences.
[9] Faris Alzahrani,et al. The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation , 2020, Symmetry.
[10] R. Lianngenga,et al. Reflection of coupled dilatational and shear waves in the generalized micropolar thermoelastic materials , 2020 .
[11] Aashish Kumar,et al. STUDY OF MICROPOLAR THERMO-ELASTICITY , 2020 .
[12] S. Mondal,et al. Two-dimensional problem of two-temperature generalized thermoelasticity using memory-dependent heat transfer: an integral transform approach , 2019, Indian Journal of Physics.
[13] A. Abouelregal. Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives , 2019, Indian Journal of Physics.
[14] A. Abouelregal. Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags , 2019, Materials Research Express.
[15] S. Chiriţă. High-order approximations of three-phase-lag heat conduction model: Some qualitative results , 2018 .
[16] Vincenzo Tibullo,et al. On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction , 2017, 2103.10068.
[17] Glenn R. Heppler,et al. Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations , 2017 .
[18] A. Abouelregal,et al. Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model , 2017 .
[19] S. Chiriţă. On the time differential dual-phase-lag thermoelastic model , 2017 .
[20] S. Chiriţă,et al. The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence , 2016 .
[21] M. Ciarletta,et al. On the wave propagation in the time differential dual-phase-lag thermoelastic model , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] M. Marin,et al. An Extension of the Domain of Influence Theorem for Generalized Thermoelasticity of Anisotropic Material with Voids , 2015 .
[23] P. Ailawalia,et al. A two dimensional fibre reinforced micropolar thermoelastic problem for a half-space subjected to mechanical force , 2015 .
[24] Rajneesh Kumar,et al. DEFORMATION DUE TO THERMAL SOURCE IN MICROPOLAR THERMOELASTIC MEDIA WITH THERMAL AND CONDUCTIVE TEMPERATURES , 2013 .
[25] M. Ezzat,et al. On the three-phase-lag linear micropolar thermoelasticity theory , 2013 .
[26] S. Shaw,et al. Moving heat source response in micropolar half-space with two-temperature theory , 2013 .
[27] Magdy A. Ezzat,et al. Two-temperature theory in generalized magneto-thermoelasticity with two relaxation times , 2011 .
[28] Santwana Mukhopadhyay,et al. On the Theory of Two-Temperature Thermoelasticity with Two Phase-Lags , 2011 .
[29] Marin Marin,et al. Harmonic Vibrations in Thermoelasticity of Microstretch Materials , 2010 .
[30] Emad Awad,et al. Constitutive Relations, Uniqueness of Solution, and Thermal Shock Application in the Linear Theory of Micropolar Generalized Thermoelasticity Involving Two Temperatures , 2010 .
[31] Santwana Mukhopadhyay,et al. Thermoelastic Interactions on Two-Temperature Generalized Thermoelasticity in an Infinite Medium with a Cylindrical Cavity , 2009 .
[32] R. Quintanilla. A Well-Posed Problem for the Dual-Phase-Lag Heat Conduction , 2008 .
[33] S. Choudhuri,et al. On A Thermoelastic Three-Phase-Lag Model , 2007 .
[34] H. Youssef. Theory of two-temperature-generalized thermoelasticity , 2006 .
[35] R. Quintanilla. On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures , 2004 .
[36] D. Tzou. Experimental support for the lagging behavior in heat propagation , 1995 .
[37] D. Tzou. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .
[38] P. M. Naghdi,et al. ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID , 1992 .
[39] D. Chandrasekharaiah. Heat-flux dependent micropolar thermoelasticity , 1986 .
[40] B. Tabarrok,et al. Generalized micropolar thermoelasticity , 1978 .
[41] T. R. Tauchert,et al. The linear theory of micropolar thermoelasticity , 1968 .
[42] H. Lord,et al. A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .
[43] A. Eringen,et al. LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .
[44] M. Biot. Thermoelasticity and Irreversible Thermodynamics , 1956 .