Numerical study of quantum transport in carbon nanotube transistors

A deeper understanding of quantum effects in nano-electronic devices helps to improve the functionality and to develop new device types. The performance of carbon nanotube (CNT) field-effect transistor is studied using the non-equilibrium Green's function (NEGF) formalism. The effects of elastic and inelastic scattering and the impact of parameters, such as electron-phonon coupling strength and phonon energy, on the device performance are analyzed.

[1]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[2]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[3]  Phaedon Avouris,et al.  Carbon nanotube field-effect transistors and logic circuits , 2002, DAC '02.

[4]  Datta,et al.  Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.

[5]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[6]  Mark S. Lundstrom,et al.  Simulating quantum transport in nanoscale MOSFETs: ballistic hole transport, subband engineering and boundary conditions , 2003 .

[7]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[8]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[9]  T. O. Espelid Doubly Adaptive Quadrature Routines Based on Newton–Cotes Rules , 2003 .

[10]  David L. Pulfrey,et al.  A Schrödinger-Poisson Solver for Modeling Carbon Nanotube FETs , 2004 .

[11]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[12]  Mark S. Lundstrom,et al.  Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .

[13]  S. Datta,et al.  Charging-induced asymmetry in molecular conductors , 2004 .

[14]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[15]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[16]  S. Datta,et al.  CONDUCTANCE SPECTRA OF MOLECULAR WIRES , 1998 .

[17]  S. Datta,et al.  Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .

[18]  Philippe Lambin,et al.  Intraband electron-phonon scattering in single-walled carbon nanotubes , 2006 .

[19]  Siegfried Selberherr,et al.  Rigorous modeling of carbon nanotube transistors , 2006 .

[20]  M. Anantram,et al.  Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.

[21]  M. P. Anantram,et al.  Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias , 2005, cond-mat/0511723.

[22]  M. Lundstrom,et al.  Role of phonon scattering in carbon nanotube field-effect transistors , 2005 .

[23]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[24]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[25]  S. Datta,et al.  Towards Multi-Scale Modeling of Carbon Nanotube Transistors , 2003, cond-mat/0312551.

[26]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[27]  Jing Guo,et al.  Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.

[28]  Gerald D. Mahan,et al.  Electron-optical phonon interaction in carbon nanotubes , 2003 .

[29]  Jing Guo,et al.  A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors , 2005 .