Numerical study of quantum transport in carbon nanotube transistors
暂无分享,去创建一个
[1] M. Radosavljevic,et al. Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.
[2] P. McEuen,et al. Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.
[3] Phaedon Avouris,et al. Carbon nanotube field-effect transistors and logic circuits , 2002, DAC '02.
[4] Datta,et al. Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.
[5] M. Anantram,et al. Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.
[6] Mark S. Lundstrom,et al. Simulating quantum transport in nanoscale MOSFETs: ballistic hole transport, subband engineering and boundary conditions , 2003 .
[7] M. Lundstrom,et al. Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.
[8] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[9] T. O. Espelid. Doubly Adaptive Quadrature Routines Based on Newton–Cotes Rules , 2003 .
[10] David L. Pulfrey,et al. A Schrödinger-Poisson Solver for Modeling Carbon Nanotube FETs , 2004 .
[11] M. Dresselhaus,et al. Physical properties of carbon nanotubes , 1998 .
[12] Mark S. Lundstrom,et al. Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .
[13] S. Datta,et al. Charging-induced asymmetry in molecular conductors , 2004 .
[14] M. Lundstrom,et al. Ballistic carbon nanotube field-effect transistors , 2003, Nature.
[15] Herbert Shea,et al. Single- and multi-wall carbon nanotube field-effect transistors , 1998 .
[16] S. Datta,et al. CONDUCTANCE SPECTRA OF MOLECULAR WIRES , 1998 .
[17] S. Datta,et al. Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .
[18] Philippe Lambin,et al. Intraband electron-phonon scattering in single-walled carbon nanotubes , 2006 .
[19] Siegfried Selberherr,et al. Rigorous modeling of carbon nanotube transistors , 2006 .
[20] M. Anantram,et al. Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.
[21] M. P. Anantram,et al. Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias , 2005, cond-mat/0511723.
[22] M. Lundstrom,et al. Role of phonon scattering in carbon nanotube field-effect transistors , 2005 .
[23] David L. Pulfrey,et al. Quantum capacitance in nanoscale device modeling , 2004 .
[24] Gerhard Klimeck,et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .
[25] S. Datta,et al. Towards Multi-Scale Modeling of Carbon Nanotube Transistors , 2003, cond-mat/0312551.
[26] Peter Burke,et al. AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .
[27] Jing Guo,et al. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.
[28] Gerald D. Mahan,et al. Electron-optical phonon interaction in carbon nanotubes , 2003 .
[29] Jing Guo,et al. A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors , 2005 .