Coupling the world with the observer: from analysis of information to active vision.

In this paper we define the content of information in an image and show how it can be computed by taking into account different levels of resolution, in the framework of information theory and the thermodynamics of irreversible transformations. The results thus obtained will eventually be exploited to derive a mechanism for active exploration of visual space suitable to perform a dynamic coupling between the agent and its environment.

[1]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[2]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[3]  Terry Caelli,et al.  On the Representation of Image Structures via Scale Space Entropy Conditions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Dr A. Alavi,et al.  Statistical Mechanics and its applications , 2007 .

[5]  I. Rentschler,et al.  Generalization of form in visual pattern classification. , 1996, Spatial vision.

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[8]  D. Foster,et al.  Discrete and continuous modes of curved-line discrimination controlled by effective stimulus duration. , 1986, Spatial vision.

[9]  L. Brillouin,et al.  Science and information theory , 1956 .

[10]  W. D. Wright Physiological Optics , 1958, Nature.

[11]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[12]  The Inner Sense of Action , 2000 .

[13]  L. Stark,et al.  Scanpaths in Eye Movements during Pattern Perception , 1971, Science.

[14]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[15]  Terry Caelli,et al.  Generalized Spatio-Chromatic Diffusion , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  M. Goodale,et al.  The objects of action and perception , 1998, Cognition.

[17]  Terry Caelli,et al.  Entropy-based representation of image information , 2002, Pattern Recognit. Lett..

[18]  Terry Caelli,et al.  Encoding Visual Information Using Anisotropic Transformations , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[20]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[21]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[22]  G. Krieger,et al.  Curvature Measures in Visual Information Processing , 1998 .

[23]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[24]  Terry Caelli,et al.  On the classification of image regions by colour, texture and shape , 1993, Pattern Recognit..

[25]  M. Ferraro,et al.  Relationship between integral transform invariances and Lie group theory , 1988 .

[26]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[27]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[28]  D. Foster,et al.  Visual gap and offset discrimination and its relation to categorical identification in brief line-element displays. , 1989, Journal of experimental psychology. Human perception and performance.

[29]  G. Hauske,et al.  Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. , 2000, Spatial vision.

[30]  C. Zetzsche,et al.  Fundamental limits of linear filters in the visual processing of two-dimensional signals , 1990, Vision Research.

[31]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[33]  Giuseppe Boccignone,et al.  Modelling gaze shift as a constrained random walk , 2004 .

[34]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[36]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[37]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[38]  B. Wandell Foundations of vision , 1995 .