Broad-Coverage Semantic Parsing as Transduction

We unify different broad-coverage semantic parsing tasks into a transduction parsing paradigm, and propose an attention-based neural transducer that incrementally builds meaning representation via a sequence of semantic relations. By leveraging multiple attention mechanisms, the neural transducer can be effectively trained without relying on a pre-trained aligner. Experiments separately conducted on three broad-coverage semantic parsing tasks – AMR, SDP and UCCA – demonstrate that our attention-based neural transducer improves the state of the art on both AMR and UCCA, and is competitive with the state of the art on SDP.

[1]  Andrew McCallum,et al.  Transition-based Dependency Parsing with Selectional Branching , 2013, ACL.

[2]  Luke S. Zettlemoyer,et al.  Broad-coverage CCG Semantic Parsing with AMR , 2015, EMNLP.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Ari Rappoport,et al.  A Transition-Based Directed Acyclic Graph Parser for UCCA , 2017, ACL.

[5]  Kevin Duh,et al.  AMR Parsing as Sequence-to-Graph Transduction , 2019, ACL.

[6]  Alexander Koller,et al.  Compositional Semantic Parsing across Graphbanks , 2019, ACL.

[7]  Chuan Wang,et al.  A Transition-based Algorithm for AMR Parsing , 2015, NAACL.

[8]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[9]  Weiwei Sun,et al.  Peking: Building Semantic Dependency Graphs with a Hybrid Parser , 2015, SemEval@NAACL-HLT.

[10]  Joakim Nivre,et al.  Incrementality in Deterministic Dependency Parsing , 2004 .

[11]  Johan Bos,et al.  Neural Semantic Parsing by Character-based Translation: Experiments with Abstract Meaning Representations , 2017, ArXiv.

[12]  Mark Steedman,et al.  Surface structure and interpretation , 1996, Linguistic inquiry.

[13]  Yejin Choi,et al.  Neural AMR: Sequence-to-Sequence Models for Parsing and Generation , 2017, ACL.

[14]  Timothy Dozat,et al.  Deep Biaffine Attention for Neural Dependency Parsing , 2016, ICLR.

[15]  Hui Wan,et al.  Rewarding Smatch: Transition-Based AMR Parsing with Reinforcement Learning , 2019, ACL.

[16]  Stephan Oepen,et al.  Broad-Coverage Semantic Dependency Parsing , 2014 .

[17]  Andreas Vlachos,et al.  UCL+Sheffield at SemEval-2016 Task 8: Imitation learning for AMR parsing with an alpha-bound , 2016, SemEval@NAACL-HLT.

[18]  Johan Bos,et al.  Wide-Coverage Semantic Analysis with Boxer , 2008, STEP.

[19]  Sampo Pyysalo,et al.  Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.

[20]  Yusuke Miyao,et al.  SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing , 2015, *SEMEVAL.

[21]  Ivan Titov,et al.  AMR Parsing as Graph Prediction with Latent Alignment , 2018, ACL.

[22]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Noah A. Smith,et al.  Transition-Based Dependency Parsing with Stack Long Short-Term Memory , 2015, ACL.

[24]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[25]  Chuan Wang,et al.  Getting the Most out of AMR Parsing , 2017, EMNLP.

[26]  Deng Cai,et al.  Core Semantic First: A Top-down Approach for AMR Parsing , 2019, EMNLP.

[27]  Noah A. Smith,et al.  Learning Joint Semantic Parsers from Disjoint Data , 2018, NAACL.

[28]  Kenji Sagae,et al.  Dynamic Programming for Linear-Time Incremental Parsing , 2010, ACL.

[29]  Jonathan May,et al.  SemEval-2017 Task 9: Abstract Meaning Representation Parsing and Generation , 2017, *SEMEVAL.

[30]  Alexander M. Rush,et al.  Character-Aware Neural Language Models , 2015, AAAI.

[31]  Heng Ji,et al.  CAMR at SemEval-2016 Task 8: An Extended Transition-based AMR Parser , 2016, SemEval@NAACL-HLT.

[32]  Hans Uszkoreit,et al.  AMR Parsing with an Incremental Joint Model , 2016, EMNLP.

[33]  Kevin Knight,et al.  Smatch: an Evaluation Metric for Semantic Feature Structures , 2013, ACL.

[34]  Marie Mikulová,et al.  Announcing Prague Czech-English Dependency Treebank 2.0 , 2012, LREC.

[35]  Wei Jiang,et al.  HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing , 2019, *SEMEVAL.

[36]  Jun'ichi Tsujii,et al.  Deep Linguistic Analysis for the Accurate Identification of Predicate-Argument Relations , 2004, COLING.

[37]  Noah A. Smith,et al.  Deep Multitask Learning for Semantic Dependency Parsing , 2017, ACL.

[38]  Guntis Barzdins,et al.  RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy , 2016, *SEMEVAL.

[39]  Xiaochang Peng,et al.  Addressing the Data Sparsity Issue in Neural AMR Parsing , 2017, EACL.

[40]  Tomek Strzalkowski,et al.  From Discourse to Logic , 1991 .

[41]  André F. T. Martins,et al.  Lisbon: Evaluating TurboSemanticParser on Multiple Languages and Out-of-Domain Data , 2015, *SEMEVAL.

[42]  Sheng Zhang,et al.  Universal Decompositional Semantics on Universal Dependencies , 2016, EMNLP.

[43]  Wei Lu,et al.  Better Transition-Based AMR Parsing with a Refined Search Space , 2018, EMNLP.

[44]  Timothy Dozat,et al.  Simpler but More Accurate Semantic Dependency Parsing , 2018, ACL.

[45]  Philipp Koehn,et al.  Abstract Meaning Representation for Sembanking , 2013, LAW@ACL.

[46]  Ari Rappoport,et al.  Universal Conceptual Cognitive Annotation (UCCA) , 2013, ACL.

[47]  Pablo N. Mendes,et al.  Improving efficiency and accuracy in multilingual entity extraction , 2013, I-SEMANTICS '13.

[48]  Yaser Al-Onaizan,et al.  AMR Parsing using Stack-LSTMs , 2017, EMNLP.

[49]  Xiaochang Peng,et al.  A Synchronous Hyperedge Replacement Grammar based approach for AMR parsing , 2015, CoNLL.

[50]  Sheng Zhang,et al.  Cross-lingual Decompositional Semantic Parsing , 2018, EMNLP.

[51]  Giorgio Satta,et al.  An Incremental Parser for Abstract Meaning Representation , 2016, EACL.

[52]  Stephan Oepen,et al.  SemEval 2014 Task 8: Broad-Coverage Semantic Dependency Parsing , 2014, *SEMEVAL.

[53]  Ari Rappoport,et al.  Multitask Parsing Across Semantic Representations , 2018, ACL.

[54]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[55]  Jaime G. Carbonell,et al.  A Discriminative Graph-Based Parser for the Abstract Meaning Representation , 2014, ACL.

[56]  Jonathan May SemEval-2016 Task 8: Meaning Representation Parsing , 2016, SemEval@NAACL-HLT.

[57]  Wanxiang Che,et al.  A Neural Transition-Based Approach for Semantic Dependency Graph Parsing , 2018, AAAI.

[58]  Jaime G. Carbonell,et al.  CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss , 2016, *SEMEVAL.

[59]  Daniel Marcu,et al.  Parsing English into Abstract Meaning Representation Using Syntax-Based Machine Translation , 2015, EMNLP.

[60]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[61]  Ari Rappoport,et al.  SemEval-2019 Task 1: Cross-lingual Semantic Parsing with UCCA , 2019, *SEMEVAL.

[62]  Stephan Oepen,et al.  Discriminant-Based MRS Banking , 2006, LREC.