Upper and lower bounding strategies for the generalized minimum spanning tree problem

Abstract We address the generalized minimum spanning tree problem (GMST) which requires spanning at least one vertex out of every set of disjoint vertices in a graph. We show that the geometric version of this problem is NP -hard, and we propose two stochastic heuristics. The first one is a very fast randomized greedy search algorithm and the second one being a genetic algorithm. Also, we investigate some existing integer programming formulations and present an new one. A new Lagrangian based lower bound is proposed and implemented to assess the performance of the heuristics. Computational experiments performed on a large set of randomly generated instances with up to 1000 vertices and 10,000 edges provide evidence of the good performance of the proposed heuristics.

[1]  Colin R. Reeves,et al.  Genetic Algorithms for the Operations Researcher , 1997, INFORMS J. Comput..

[2]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[3]  Corinne Feremans Generalized Spanning Trees and Extensions , 2001 .

[4]  Bertrand M. T. Lin,et al.  Ant-Tree: an ant colony optimization approach to the generalized minimum spanning tree problem , 2003, J. Exp. Theor. Artif. Intell..

[5]  Moshe Dror,et al.  Generalized spanning trees , 2000, Eur. J. Oper. Res..

[6]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[7]  Sunil Chopra,et al.  Polyhedral Approaches for the Steiner Tree Problem on Graphs , 2001 .

[8]  J. E. Beasley An SST-based algorithm for the steiner problem in graphs , 1989, Networks.

[9]  Gilbert Laporte,et al.  A comparative analysis of several formulations for the generalized minimum spanning tree problem , 2002, Networks.

[10]  Salvatore Torquato,et al.  Globally and locally minimal weight spanning tree networks , 2001 .

[11]  Stefan Voß,et al.  Solving group Steiner problems as Steiner problems , 2004, Eur. J. Oper. Res..

[12]  P. Pop The generalized minimum spanning tree problem , 2000 .

[13]  Mohamed Haouari,et al.  A probabilistic greedy search algorithm for combinatorial optimisation with application to the set covering problem , 2002, J. Oper. Res. Soc..

[14]  Peter Eades,et al.  On Optimal Trees , 1981, J. Algorithms.

[15]  Gilbert Laporte,et al.  On generalized minimum spanning trees , 2001, Eur. J. Oper. Res..

[16]  Ronald L. Graham,et al.  On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.

[17]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[18]  R. Brady Optimization strategies gleaned from biological evolution , 1985, Nature.

[19]  Michel X. Goemans,et al.  A catalog of steiner tree formulations , 1993, Networks.

[20]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[21]  Chuan Yi Tang,et al.  The full Steiner tree problem , 2003, Theor. Comput. Sci..

[22]  Ravindra K. Ahuja,et al.  Applications of network optimization , 1992 .

[23]  Young-Soo Myung,et al.  On the generalized minimum spanning tree problem , 1995, Networks.

[24]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[25]  Ravindra K. Ahuja,et al.  Developing Fitter Genetic Algorithms , 1997, INFORMS J. Comput..

[26]  Richard T. Wong,et al.  A dual ascent approach for steiner tree problems on a directed graph , 1984, Math. Program..

[27]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[28]  Edmund Ihler,et al.  Class Steiner Trees and VLSI-design , 1999, Discret. Appl. Math..