Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set, which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact algorithms are proposed: an enumerative algorithm and its improved version. This second algorithm results from an accurate analysis of the surrogate multipliers and the dominance relations between bound sets. Based on the improved exact algorithm, an approximated version is derived. The proposed algorithms are benchmarked using a dataset composed of three groups of numerical instances. The performances are assessed thanks to a comparative analysis where exact algorithms are compared between them, the approximated algorithm is confronted to an algorithm introduced in a recent research work.

[1]  Vincent Boyer Contribution à la programmation en nombre entier , 2007 .

[2]  María Auxilio Osorio Lama,et al.  Hard problem generation for MKP , 2005, Sixth Mexican International Conference on Computer Science (ENC'05).

[3]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[4]  Kay Chen Tan,et al.  Multi-Objective Memetic Algorithms , 2009 .

[5]  Fabien Tricoire,et al.  Multi-directional local search , 2012, Comput. Oper. Res..

[6]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[7]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[8]  S. Salhi,et al.  A survey of effective heuristics and their application to a variety of knapsack problems , 2007 .

[9]  Jacques Teghem,et al.  The multiobjective multidimensional knapsack problem: a survey and a new approach , 2010, Int. Trans. Oper. Res..

[10]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[11]  George Mavrotas,et al.  Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..

[12]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[13]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[14]  Olivier Spanjaard,et al.  Using Bound Sets in Multiobjective Optimization: Application to the Biobjective Binary Knapsack Problem , 2010, SEA.

[15]  Xavier Gandibleux,et al.  Bounds and bound sets for biobjective combinatorial optimization problems , 2001 .

[16]  Julien Jorge Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. (New propositions for the exact solution of the unidimensional multi-criteria knapsack problem with binary variables) , 2010 .

[17]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[18]  José Rui Figueira,et al.  A Scatter Search Method for the Bi-Criteria Multi-dimensional {0,1}-Knapsack Problem using Surrogate Relaxation , 2004, J. Math. Model. Algorithms.

[19]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[20]  Hisao Ishibuchi,et al.  Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study , 2009 .

[21]  Fred Glover,et al.  Surrogate Constraint Duality in Mathematical Programming , 1975, Oper. Res..

[22]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[23]  A. Fréville,et al.  An exact search for the solution of the surrogate dual of the 0–1 bidimensional knapsack problem , 1993 .

[24]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[25]  David Pisinger,et al.  The off-line group seat reservation problem , 2010, Eur. J. Oper. Res..

[26]  M. Jalali Varnamkhasti,et al.  Overview of the Algorithms for Solving the Multidimensional Knapsack Problems , 2012 .

[27]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[28]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[29]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[30]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[31]  José Rui Figueira,et al.  Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems , 2011, J. Glob. Optim..

[32]  Stanley Zionts,et al.  Multiple Criteria Decision Making in the New Millennium , 2001 .

[33]  Krzysztof Fleszar,et al.  Fast, effective heuristics for the 0-1 multi-dimensional knapsack problem , 2009, Comput. Oper. Res..

[34]  J. Teghem,et al.  Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .