Counter equatorial electrojet: Analysis of the variability in daytime mesopause temperature and winds

[1]  Wallace H. Campbell,et al.  Physics Of Geomagnetic Phenomena , 2013 .

[2]  K. K. Kumar,et al.  Reply to comment by R. Dhanya and S. Gurubaran on “Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 1. Comparison of wind measurements with MF spaced antenna radar system” , 2009 .

[3]  T. Pant,et al.  Equatorial counter electrojets and polar stratospheric sudden warmings - a classical example of high latitude-low latitude coupling? , 2009 .

[4]  T. Pant,et al.  Determination of day‐time OH emission heights using simultaneous meteor radar, day‐glow photometer and TIMED/SABER observations over Thumba (8.5°N, 77°E) , 2008 .

[5]  K. K. Kumar,et al.  Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 1. Comparison of wind measurements with MF spaced antenna radar system , 2007 .

[6]  T. Pant,et al.  Highly localized cooling in daytime mesopause temperature over the dip equator during counter electrojet events: First results , 2007 .

[7]  T. Pant,et al.  Atmosphere‐Ionosphere coupling observed over the dip equatorial MLTI region through the quasi 16‐day wave , 2007 .

[8]  T. Pant,et al.  A comparative study of daytime mesopause temperatures obtained using unique ground based optical and meteor wind radar techniques over the magnetic equator , 2005 .

[9]  J. Bremer,et al.  Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH, rocket and lidar measurements , 2004 .

[10]  S. Gurubaran,et al.  Structural changes in the tidal components in mesospheric winds as observed by the MF radar during afternoon counter electrojet events , 2002 .

[11]  S. Gurubaran The equatorial counter electrojet: Part of a worldwide current system? , 2002 .

[12]  S. Mukherjee,et al.  Local time dependence of the equatorial counter electrojet effect in a narrow longitudinal belt , 2001 .

[13]  R. Sridharan,et al.  First results on daytime mesopause OH rotational temperatures using ground-based photometry from equatorial latitudes , 1999 .

[14]  C. Meyer Erratum: ``Gravity wave interactions with the diurnal propagating tide'' , 1999 .

[15]  T. Pant,et al.  A multiwavelength daytime photometer - a new tool for the investigation of atmospheric processes , 1998 .

[16]  G. Thuillier,et al.  Mean vertical wind in the mesosphere-lower thermosphere region (80–120 km) deduced from the WINDII observations on board UARS , 1997 .

[17]  A. Manson,et al.  Upper atmosphere wind systems during reverse equatorial electrojet events , 1996 .

[18]  Jeffrey M. Forbes,et al.  On modeling migrating solar tides , 1995 .

[19]  R. Sridharan,et al.  Novel mask design for multiwavelength dayglow photometry. , 1993, Applied optics.

[20]  K. Rajeev,et al.  Mean winds and tidal components during counter electrojet events , 1993 .

[21]  M. Mlynczak,et al.  A detailed evaluation of the heating efficiency in the middle atmosphere , 1993 .

[22]  B. Anandarao,et al.  Structural changes in the currents and fields of the equatorial electrojet due to zonal and meridional winds , 1987 .

[23]  R. Stening Modeling the equatorial electrojet , 1985 .

[24]  J. Forbes The equatorial electrojet , 1981 .

[25]  C. Reddy,et al.  Height and latitude structure of electric fields and currents due to local east-west winds in the equatorial electrojet , 1981 .

[26]  C. Reddy The equatorial electrojet: a review of the ionospheric and geomagnetic aspects , 1981 .

[27]  B. Arora,et al.  The afternoon counter-electrojet phenomenon , 1980 .

[28]  B. Anandarao,et al.  Vertical winds as a plausible cause for equatorial counter electrojet , 1980 .

[29]  J. Forbes,et al.  Atmospheric solar tides and their electrodynamic effects. I - The global Sq current system. II - The equatorial electrojet , 1976 .

[30]  P. Mayaud,et al.  Equatorial electrojet and regular daily variation SR—III. Comparison of observations with a physical model , 1976 .

[31]  J. Meriwether High latitude airglow observations of correlated short-term fluctuations in the hydroxyl meinel 8-3 band intensity and rotational temperature , 1975 .

[32]  J. Schieldge,et al.  The ionospheric dynamo and equatorial magnetic variations , 1973 .

[33]  A. Richmond Equatorial electrojet-I. Development of a model including winds and instabilities , 1973 .

[34]  P. Gouin Reversal of the Magnetic Daily Variation at Addis Ababa , 1962, Nature.

[35]  C. Hanuise,et al.  Global dynamo simulation of ionospheric currents and their connection with the equatorial electrojet and counter electrojet: A case study , 1983 .

[36]  A. Richmond,et al.  The Quiet-Time Equatorial Electrojet and Counter-Electrojet , 1979 .