Centroidal Voronoi Tessellation of Line Segments and Graphs

Centroidal Voronoi Tessellation (CVT) of points has many applications in geometry processing, including re‐meshing and segmentation, to name but a few. In this paper, we generalize the CVT concept to graphs via a variational characterization. Given a graph and a 3D polygonal surface, our method optimizes the placement of the vertices of the graph in such a way that the graph segments best approximate the shape of the surface. We formulate the computation of CVT for graphs as a continuous variational problem, and present a simple, approximate method for solving this problem. Our method is robust in the sense that it is independent of degeneracies in the input mesh, such as skinny triangles, T‐junctions, small gaps or multiple connected components. We present some applications, to skeleton fitting and to shape segmentation.

[1]  Scott Schaefer,et al.  Scales and Scale‐like Structures , 2010, Comput. Graph. Forum.

[2]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[3]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[4]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[5]  Tamal K. Dey,et al.  Defining and computing curve-skeletons with medial geodesic function , 2006, SGP '06.

[6]  Scott Schaefer,et al.  Example-based skeleton extraction , 2007, Symposium on Geometry Processing.

[7]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[8]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[9]  Christine Depraz,et al.  Harmonic skeleton for realistic character animation , 2007, SCA '07.

[10]  Oliver Deussen,et al.  Beyond Stippling 
— Methods for Distributing Objects on the Plane , 2003, Comput. Graph. Forum.

[11]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[12]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[13]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[14]  Tong-Yee Lee,et al.  Curve-Skeleton Extraction Using Iterative Least Squares Optimization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[16]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[17]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[18]  Ariel Shamir,et al.  On‐the‐fly Curve‐skeleton Computation for 3D Shapes , 2007, Comput. Graph. Forum.

[19]  Jean-Marc Chassery,et al.  Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening , 2004, Comput. Graph. Forum.

[20]  Ron Goldman,et al.  Computing quadric surface intersections based on an analysis of plane cubic curves , 2002, Graph. Model..

[21]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  T. Hastie,et al.  Principal Curves , 2007 .

[23]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[24]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[25]  Ivan E. Sutherland,et al.  Reentrant polygon clipping , 1974, Commun. ACM.

[26]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[27]  Matthew L. Baker,et al.  Computing a Family of Skeletons of Volumetric Models for Shape Description , 2006, GMP.

[28]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[29]  Jean-Laurent Mallet,et al.  Discrete smooth interpolation , 1989, TOGS.

[30]  Sylvain Lazard,et al.  Intersecting quadrics: an efficient and exact implementation , 2004, SCG '04.

[31]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[32]  J. Brandt Convergence and continuity criteria for discrete approximations of the continuous planar skeleton , 1994 .

[33]  Guido Brunnett,et al.  Fast Force Field Approximation and its Application to Skeletonization of Discrete 3D Objects , 2008, Comput. Graph. Forum.

[34]  Ilya Baran,et al.  Automatic rigging and animation of 3D characters , 2007, SIGGRAPH 2007.

[35]  Matthew L. Baker,et al.  Computing a family of skeletons of volumetric models for shape description , 2007, Comput. Aided Des..

[36]  Hans-Peter Seidel,et al.  Automatic Conversion of Mesh Animations into Skeleton‐based Animations , 2008, Comput. Graph. Forum.

[37]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.