A hybrid meta heuristic algorithm for bi-objective minimum cost flow (BMCF) problem
暂无分享,去创建一个
[1] G. Rote,et al. Approximation of convex curves with application to the bicriterial minimum cost flow problem , 1989 .
[2] C. Goh,et al. A method for convex curve approximation , 1997 .
[3] Y. Aneja,et al. BICRITERIA TRANSPORTATION PROBLEM , 1979 .
[4] P. Simin Pulat,et al. Bicriteria network flow problems: Continuous case , 1991 .
[5] Tapan P. Bagchi,et al. Multiobjective Scheduling by Genetic Algorithms , 1999 .
[6] G. Rote,et al. Sandwich approximation of univariate convex functions with an application to separable convex programming , 1991 .
[7] Horst W. Hamacher,et al. Multiple objective minimum cost flow problems: A review , 2007, Eur. J. Oper. Res..
[8] P. Simin Pulat,et al. Efficient solutions for the bicriteria network flow problem , 1992, Comput. Oper. Res..
[9] Günther Ruhe,et al. Complexity results for multicriterial and parametric network flows using a pathological graph of Zadeh , 1988, ZOR Methods Model. Oper. Res..
[10] Konstantinos G. Margaritis,et al. Performance comparison of memetic algorithms , 2004, Appl. Math. Comput..
[11] Lawrence J. Fogel,et al. Artificial Intelligence through Simulated Evolution , 1966 .
[12] Günther Ruhe,et al. Flüsse in Netzwerken: Komplexität und Algorithmen , 1988 .
[13] Lawrence J. Fogel,et al. Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .
[14] R. S. Laundy,et al. Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .
[15] M. C. Puri,et al. Bi-criteria network problem , 1984 .
[16] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[17] David K. Smith. Network Flows: Theory, Algorithms, and Applications , 1994 .
[18] Antonio Sedeño-Noda,et al. The biobjective minimum cost flow problem , 2000, Eur. J. Oper. Res..