Time and resource constrained scheduling : a constraint satisfaction approach

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  Emile H. L. Aarts,et al.  Examination time tabling : a case study for constraint satisfaction , 1994 .

[2]  R. Haupt,et al.  A survey of priority rule-based scheduling , 1989 .

[3]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[4]  Bernard Nudel,et al.  Consistent-Labeling Problems and Their Algorithms: Expected-Complexities and Theory-Based Heuristics , 1983, Artif. Intell..

[5]  Jan Korst,et al.  Deterministic and randomized local search , 1993 .

[6]  Thomas Joel Russell Johnson,et al.  An algorithm for the resource constrained project scheduling problem , 1967 .

[7]  F. Brian Talbot,et al.  Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case , 1982 .

[8]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[9]  Egon Balas,et al.  The Shifting Bottleneck Procedure for Job Shop Scheduling , 1988 .

[10]  Edward W. Davis,et al.  A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling , 1975 .

[11]  J. Erschler,et al.  Technical Note - Finding Some Essential Characteristics of the Feasible Solutions for a Scheduling Problem , 1976, Oper. Res..

[12]  J. M. Tamarit,et al.  Project scheduling with resource constraints: A branch and bound approach , 1987 .

[13]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[14]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[15]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[16]  Ari P. J. Vepsalainen Priority rules for job shops with weighted tardiness costs , 1987 .

[17]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[18]  Jacek Blazewicz,et al.  Scheduling under resource constraints - deterministic models , 1986 .

[19]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[20]  Mark D. Johnston,et al.  A discrete stochastic neural network algorithm for constraint satisfaction problems , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[21]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[22]  Pedro Meseguer,et al.  Constraint Satisfaction Problems: An Overview , 1989, AI Commun..

[23]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[24]  Paul Walton Purdom,et al.  Search Rearrangement Backtracking and Polynomial Average Time , 1983, Artif. Intell..

[25]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[26]  A. J. Cole,et al.  The preparation of examination time-tables using a small-store computer , 1964, Comput. J..

[27]  Jan Karel Lenstra,et al.  A Computational Study of Local Search Algorithms for Job Shop Scheduling , 1994, INFORMS J. Comput..

[28]  Eric Pinson,et al.  A Practical Use of Jackson''s Preemptive Schedule for Solving the Job-Shop Problem. Annals of Opera , 1991 .

[29]  Nicola Muscettola,et al.  Scheduling by iterative partition of bottleneck conflicts , 1993, Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.

[30]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[31]  H.C.P.M. van Iersel Time and resource constrained scheduling : a case study in production planning , 1994 .

[32]  J. Erschler,et al.  Characterizing the set of feasible sequences for n jobs to be carried out on a single machine , 1980 .

[33]  James H. Patterson,et al.  A Horizon-Varying, Zero-One Approach to Project Scheduling , 1974 .

[34]  Mauro Dell'Amico,et al.  Applying tabu search to the job-shop scheduling problem , 1993, Ann. Oper. Res..

[35]  James H. Patterson,et al.  An Efficient Integer Programming Algorithm with Network Cuts for Solving Resource-Constrained Scheduling Problems , 1978 .

[36]  Frederick Brian Talbot,et al.  An integer programming algorithm for the resource-constrained project scheduling problem , 1976 .

[37]  W CarterMichael A survey of practical applications of examination timetabling algorithms , 1986 .

[38]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[39]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[40]  Stephen F. Smith,et al.  A Probabilistic Framework for Resource-Constrained Multi-Agent Planning , 1987, IJCAI.

[41]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[42]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..

[43]  D.A.A. van Erp Taalman Kip Some constraint satisfaction algorithms for the generalized job shop scheduling problem , 1992 .

[44]  Sol Broder,et al.  Final examination scheduling , 1964, Commun. ACM.

[45]  William J. Cook,et al.  A Computational Study of the Job-Shop Scheduling Problem , 1991, INFORMS Journal on Computing.

[46]  Éric D. Taillard,et al.  Parallel Taboo Search Techniques for the Job Shop Scheduling Problem , 1994, INFORMS J. Comput..

[47]  Kees M. van Hee,et al.  Randomized constraint satisfaction for job shop scheduling , 1993, International Joint Conference on Artificial Intelligence.

[48]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[49]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[50]  David Y. Y. Yun,et al.  A Planning/Scheduling Methodology for the Constrained Resource Problem , 1989, IJCAI.

[51]  J. Carlier,et al.  An algorithm for solving the job-shop problem , 1989 .

[52]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[53]  Eugene C. Freuder,et al.  The Complexity of Constraint Satisfaction Revisited , 1993, Artif. Intell..

[54]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[55]  E.M.L. Beale,et al.  Branch and Bound Methods for Mathematical Programming Systems , 1977 .

[56]  Edward W. Davis,et al.  Project Scheduling under Resource Constraints—Historical Review and Categorization of Procedures , 1973 .

[57]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[58]  Stephen F. Smith,et al.  Slack-Based Heuristics for Constraint Satisfaction Scheduling , 1993, AAAI.

[59]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[60]  K. Sycara,et al.  Backtracking Techniques for Hard Scheduling Problems , 1993 .

[61]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[62]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[63]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[64]  Edward W. Davis,et al.  An Algorithm for Optimal Project Scheduling under Multiple Resource Constraints , 1971 .

[65]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[66]  Ehl Emile Aarts,et al.  A computational study of constraint satisfaction for multiple capacitated job shop scheduling , 1996 .

[67]  Stéphane Dauzère-Pérès,et al.  A modified shifting bottleneck procedure for job-shop scheduling , 1993 .

[68]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[69]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[70]  Norman Sadeh,et al.  Look-ahead techniques for micro-opportunistic job shop scheduling , 1992 .

[71]  David S. Johnson,et al.  Two-Processor Scheduling with Start-Times and Deadlines , 1977, SIAM J. Comput..

[72]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[73]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[74]  Egon Balas,et al.  One Machine Scheduling With Delayed Precedence Constraints. , 1993 .

[75]  A. E. Eiben,et al.  A unifying approach to heuristic search , 1995, Ann. Oper. Res..

[76]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[77]  James H. Patterson,et al.  Scheduling a Project Under Multiple Resource Constraints: A Zero-One Programming Approach , 1976 .