A novel method to estimate glutamine deamidation levels in parchment collagen obtained from low-quality MALDI-TOF data

This version of the article has

[1]  O. Deparis,et al.  Data From “A Biocodicological Analysis of the Medieval Library and Archive From Orval Abbey, Belgium” , 2022, Journal of Open Archaeology Data.

[2]  M. Collins,et al.  A biocodicological analysis of the medieval library and archive from Orval Abbey, Belgium , 2021, Royal Society Open Science.

[3]  Samantha Brown,et al.  On the standardization of ZooMS nomenclature. , 2020, Journal of proteomics.

[4]  M. Collins,et al.  So you want to do biocodicology? A field guide to the biological analysis of parchment , 2019, Heritage Science.

[5]  J. Thomas-Oates,et al.  Ionisation bias undermines the use of matrix‐assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios , 2019, Rapid communications in mass spectrometry : RCM.

[6]  Elena R. Schroeter,et al.  Glutamine deamidation: an indicator of antiquity, or preservational quality? , 2016, Rapid communications in mass spectrometry : RCM.

[7]  Roman Fischer,et al.  Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting , 2015, Proceedings of the National Academy of Sciences.

[8]  N. V. van Doorn,et al.  Assessing the extent of bone degradation using glutamine deamidation in collagen. , 2012, Analytical chemistry.

[9]  Marie Soressi,et al.  Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. , 2012, Rapid communications in mass spectrometry : RCM.

[10]  K. Strimmer,et al.  MALDIquant: a versatile R package for the analysis of mass spectrometry data , 2012, Bioinform..

[11]  Michael Buckley,et al.  Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. , 2009, Rapid communications in mass spectrometry : RCM.

[12]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[13]  N. Robinson,et al.  Measurement of deamidation of intact proteins by isotopic envelope and mass defect with ion cyclotron resonance Fourier transform mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[14]  N. Robinson,et al.  Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[15]  Brian T Chait,et al.  On the mature of the chemical noise in MALDI mass spectra , 2002, Journal of the American Society for Mass Spectrometry.

[16]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[17]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[18]  D. R. Cousens,et al.  SNIP, A STATISTICS-SENSITIVE BACKGROUND TREATMENT FOR THE QUANTITATIVE-ANALYSIS OF PIXE SPECTRA IN GEOSCIENCE APPLICATIONS , 1988 .

[19]  M. Bromba,et al.  Application hints for Savitzky-Golay digital smoothing filters , 1981 .

[20]  Jean. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1964, Analytical chemistry.

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  S. Kansa,et al.  Distinguishing between archaeological sheep and goat bones using a single collagen peptide , 2010 .

[23]  Daniel Howard,et al.  MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation , 2006, EURASIP J. Adv. Signal Process..

[24]  D. Urry,et al.  Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. , 1991, Critical reviews in biochemistry and molecular biology.

[25]  R. Reed,et al.  Ancient skins, parchments and leathers , 1972 .

[26]  Michael L. Ryder,et al.  Parchment—its history, manufacture and composition , 1964 .