The Geometry of Physics
暂无分享,去创建一个
[1] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[2] B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .
[3] H. Samelson,et al. Topology of Lie groups , 1952 .
[4] G. Duff,et al. HARMONIC TENSORS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY , 1952 .
[5] Edmund Taylor Whittaker. Reviews of Books and Recordings: A History of the Theories of Aether and Electricity , 1954 .
[6] I. N. Sneddon,et al. Finite Deformation of an Elastic Solid , 1954 .
[7] K. O. Friedrichs,et al. Differential forms on riemannian manifolds , 1955 .
[8] K. Nomizu. Lie groups and differential geometry , 1956 .
[9] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.
[10] Shôshichi Kobayashi. Fixed Points of Isometries , 1958, Nagoya Mathematical Journal.
[11] C. Truesdell,et al. The Classical Field Theories , 1960 .
[12] Richard Phillips Feynman,et al. The Theory Of Fundamental Processes , 1961 .
[13] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[14] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[15] Theodore Frankel,et al. Critical Submanifolds of the Classical Groups and Stiefel Manifolds , 1965 .
[16] L. Brillouin,et al. Tensors in Mechanics and Elasticity , 1965 .
[17] R. Courant,et al. Introduction to Calculus and Analysis , 1991 .
[18] Tosio Kato. Perturbation theory for linear operators , 1966 .
[19] L. Susskind,et al. OBSERVABILITY OF THE SIGN CHANGE OF SPINORS UNDER 2$pi$ ROTATIONS. , 1967 .
[20] H. K. Moffatt,et al. The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.
[21] R. Hermann. Differential geometry and the calculus of variations , 1970 .
[22] F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups , 1971 .
[23] J. Boyling. An axiomatic approach to classical thermodynamics , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[24] T. Lasinski,et al. Strongly interacting particles , 1973 .
[25] V. Arnold,et al. Ordinary Differential Equations , 1973 .
[26] N. Grossman. Holonomic measurables in geodesy , 1974 .
[27] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[28] J. Sniatycki. Prequantization of charge , 1974 .
[29] H. Lawson. Minimal varieties in real and complex geometry , 1974 .
[30] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[31] Manfredo P. do Carmo,et al. Differential geometry of curves and surfaces , 1976 .
[32] G. Galloway. A generalization of Myers' theorem and an application to relativistic cosmology , 1979 .
[33] D. Raine. General relativity , 1980, Nature.
[34] Louis Michel,et al. SYMMETRY DEFECTS AND BROKEN SYMMETRY. CONFIGURATIONS - HIDDEN SYMMETRY , 1980 .
[35] D. Bleecker,et al. Gauge theory and variational principles , 1981 .
[36] Geometry, particles and fields , 1983 .
[37] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[38] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[39] R. Bott. Lectures on Morse theory, old and new , 1982 .
[40] C. Truesdell. The influence of elasticity on analysis: The classic heritage , 1983 .
[41] Barry Simon,et al. Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .
[42] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[43] Siddhartha Sen,et al. Topology and geometry for physicists , 1983 .
[44] M. Berry. Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[45] S. Coleman,et al. Aspects of Symmetry , 1985 .
[46] Richard Phillips Feynman,et al. Elementary Particles and the Laws of Physics , 1987 .
[47] J. Roe. Elliptic Operators, Topology and Asymptotic Methods , 1988 .
[48] On Induced Representations , 1988 .
[49] P. Bamberg,et al. A course in mathematics for students of physics , 1990 .
[50] C. N. Yang and contemporary mathematics , 1993 .
[51] On the growth of waves on manifolds , 1993 .
[52] Introduction to quantum field theory for mathematicians , 1995 .
[53] R. Osserman. Poetry of the Universe , 1995 .
[54] S. Weinberg. The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .
[55] Gerard 't Hooft. In Search of the Ultimate Building Blocks , 1996 .
[56] W. Hsiang,et al. Lectures on Lie Groups , 1998 .
[57] R. Ho. Algebraic Topology , 2022 .