Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability.

[1]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[2]  Zongping Shao,et al.  Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. , 2015, ACS applied materials & interfaces.

[3]  Xueqin Zhang,et al.  Symmetric/Asymmetric Supercapacitor Based on the Perovskite-type Lanthanum Cobaltate Nanofibers with Sr-substitution. , 2015 .

[4]  Xueqin Zhang,et al.  Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors , 2015 .

[5]  Lina Wang,et al.  Preparation of La1−xCaxMnO3 perovskite–graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium , 2014 .

[6]  C. Zhi,et al.  Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. , 2014, ACS applied materials & interfaces.

[7]  William G. Hardin,et al.  Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. , 2014, Nature materials.

[8]  Xinzhi Yu,et al.  Super Long‐Life Supercapacitors Based on the Construction of Nanohoneycomb‐Like Strongly Coupled CoMoO4–3D Graphene Hybrid Electrodes , 2014, Advanced materials.

[9]  Zongping Shao,et al.  Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. , 2013, Nanoscale.

[10]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[11]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[12]  Q. Li,et al.  Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors , 2013 .

[13]  Jinping Liu,et al.  Template synthesis of hollow fusiform RuO2·xH2O nanostructure and its supercapacitor performance , 2013 .

[14]  Hua Zhang,et al.  Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance , 2012, Advanced materials.

[15]  Weiguo Song,et al.  Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. , 2011, Nanoscale.

[16]  Min Xiong,et al.  Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1−x)ScxO3−δ as cathode for IT-SOFC , 2011 .

[17]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[18]  T. He,et al.  Novel SrCo1−yNbyO3−δ cathodes for intermediate-temperature solid oxide fuel cells , 2010 .

[19]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[20]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[21]  G. Cao,et al.  Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities , 2009 .

[22]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[23]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[24]  Zongping Shao,et al.  Systematic investigation on new SrCo1−yNbyO3−δ ceramic membranes with high oxygen semi-permeability , 2008 .

[25]  Xiao-hui Liu,et al.  Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion , 2008 .

[26]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[27]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[28]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[29]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[30]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[31]  E. Yeager,et al.  Differential Capacitance Study of Stress‐Annealed Pyrolytic Graphite Electrodes , 1971 .