Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator

Triangle is a robust implementation of two-dimensional constrained Delaunay triangulation and Ruppert's Delaunay refinement algorithm for quality mesh generation. Several implementation issues are discussed, including the choice of triangulation algorithms and data structures, the effect of several variants of the Delaunay refinement algorithm on mesh quality, and the use of adaptive exact arithmetic to ensure robustness with minimal sacrifice of speed. The problem of triangulating a planar straight line graph (PSLG) without introducing new small angles is shown to be impossible for some PSLGs, contradicting the claim that a variant of the Delaunay refinement algorithm solves this problem.

[1]  Journal of the Association for Computing Machinery , 1961, Nature.

[2]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[3]  L. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.

[4]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[5]  Leonidas J. Guibas,et al.  Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.

[6]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[7]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[8]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[9]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[10]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[11]  Scott A. Mitchell,et al.  Cardinality Bounds for Triangulations with Bounded Minimum Angle , 1994, CCCG.

[12]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[13]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[14]  Jonathan Richard Shewchuk,et al.  Robust adaptive floating-point geometric predicates , 1996, SCG '96.

[15]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.

[16]  Robert L. Scot Drysdale,et al.  A Comparison of Sequential Delaunay Triangulation Algorithms , 1997, Comput. Geom..