Numerical analysis of surface wave excitation in a planar-type nonmagnetized plasma processing device

Two-dimensional numerical simulations based on the finite-difference time-domain approximation to Maxwell's equations coupled with nonmagnetized cold electron plasma equations are used to study surface wave propagation in a four-layer planar type surface wave plasma processing structure (Komachi et al., 1994) under the assumption that the plasma is overdense. Simulations are used to verify the existence of surface waves along the plasma-dielectric window interface as well as to investigate the excitation mechanism of surface waves. In addition, simulations are used to study the effect of the air gap on the electric field distribution at the plasma-dielectric window interface. It is found that metal edges located along the processing chamber wall sufficiently close to the interface are needed to excite surface waves along the interface. It is also found that the air gap layer helps achieve a more uniform electric field distribution over the processing chamber.

[1]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[2]  I. Zhelyazkov,et al.  Surface waves in a homogeneous plasma sharply bounded by a dielectric , 1978 .

[3]  K. Komachi Affecting factors on surface‐wave‐produced plasma , 1993 .

[4]  M. Nagatsu,et al.  Surface Wave Eigenmodes in a Finite-Area Plane Microwave Plasma , 1997 .

[5]  M. Moisan,et al.  Attenuation of a surface wave in an unmagnetized RF plasma column , 1977 .

[6]  M. Moisan,et al.  New surface wave launchers for sustaining plasma columns at submicrowave frequencies (1–300 MHz) , 1987 .

[7]  M. Moisan Description and properties of an r.f. plasma used for the study of parametric interaction of a strong E-M field with plasma , 1974 .

[8]  Michel Moisan,et al.  Plasma sources based on the propagation of electromagnetic surface waves , 1991 .

[9]  A. W. Trivelpiece,et al.  Space Charge Waves in Cylindrical Plasma Columns , 1959 .

[10]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[11]  M. Moisan,et al.  A new HF device for the production of long plasma columns at a high electron density , 1974 .

[12]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[13]  M. Moisan,et al.  Characteristics of surface-wave propagation in dissipative cylindrical plasma columns , 1993, Journal of Plasma Physics.

[14]  R. Collin Field theory of guided waves , 1960 .

[15]  Jeffrey L. Young,et al.  A full finite difference time domain implementation for radio wave propagation in a plasma , 1994 .

[16]  A. Trivelpiece,et al.  Experimental investigations of the propagation of surface waves along a plasma column , 1982 .

[17]  R. B. Standler,et al.  A frequency-dependent finite-difference time-domain formulation for dispersive materials , 1990 .

[18]  S. Kobayashi,et al.  Gegeneration of a Microwave Plasma Using Traveling Waves , 1989 .

[19]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[20]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[21]  D. Tuma A quiet, uniform microwave gas discharge for lasers (Notes) , 1970 .

[22]  J. Kong Electromagnetic Wave Theory , 1986 .

[23]  S. Kobayashi,et al.  Resist ashing using surface-wave-produced plasmas , 1990 .

[24]  Michel Moisan,et al.  A Small Microwave Plasma Source for Long Column Production without Magnetic Field , 1975, IEEE Transactions on Plasma Science.

[25]  Qiang Chen,et al.  An FDTD formulation for dispersive media using a current density , 1998 .

[26]  R. Pantel,et al.  The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns , 1979 .

[27]  R. Pantel,et al.  A Waveguide-Based Launcher to Sustain Long Plasma Columns through the Propagation of an Electromagnetic Surface Wave , 1984, IEEE Transactions on Plasma Science.

[28]  Y. Yoshida,et al.  Generation of a Surface-Wave-Enhanced Plasma Using Coaxial-Type Open-Ended Dielectric Cavity , 1995 .

[29]  K. Komachi ELECTRIC FIELD IN SURFACE-WAVE-PRODUCED PLASMAS , 1994 .