Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1

We report estimates of the amount, distribution, and uncertainty of aboveground biomass (AGB) of the different ecoregions and forest land cover classes within the North American boreal forest, analyze the factors driving the error estimates, and compare our estimates with other reported values. A three-phase sampling strategy was used (i) to tie ground plot AGB to airborne profiling lidar metrics and (ii) to link the airborne estimates of AGB to ICESat-GLAS lidar measurements such that (iii) GLAS could be used as a regional sampling tool. We estimated the AGB of the North American boreal forest at 21.8 Pg, with relative error of 1.9% based on 256 GLAS orbits (229 086 pulses). The distribution of AGB was 46.6% for western Canada, 43.7% for eastern Canada, and 9.7% for Alaska. With a single exception, relative errors were under 4% for the three regions and for the major cover types and under 10% at the ecoregion level. The uncertainties of the estimates were calculated using a variance estimator that accoun...

[1]  Klaus Scipal,et al.  Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions , 2017 .

[2]  Lori A. Magruder,et al.  The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems , 2016, Remote. Sens..

[3]  Lijuan Liu,et al.  Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[4]  R. Nelson,et al.  Hierarchical model-based inference for forest inventory utilizing three sources of information , 2016, Annals of Forest Science.

[5]  Joanne C. White,et al.  Integration of Landsat time series and field plots for forest productivity estimates in decision support models , 2016 .

[6]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[7]  Min Feng,et al.  Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone , 2016, Remote. Sens..

[8]  Marc Simard,et al.  Continental-Scale Canopy Height Modeling by Integrating National, Spaceborne, and Airborne LiDAR Data , 2016 .

[9]  E. Næsset,et al.  Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation , 2016, Forest Ecosystems.

[10]  P. Bernier,et al.  Cover density recovery after fire disturbance controls landscape aboveground biomass carbon in the boreal forest of eastern Canada , 2016 .

[11]  Qi Chen,et al.  Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data , 2015, Remote. Sens..

[12]  Nicholas C. Coops,et al.  Virtual constellations for global terrestrial monitoring , 2015 .

[13]  R. Nelson,et al.  NACP LiDAR-based Biomass Estimates, Boreal Forest Biome, North America, 2005-2006 , 2015 .

[14]  Guoqing Sun,et al.  The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient , 2015 .

[15]  Erik Næsset,et al.  The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient , 2014 .

[16]  Thorsten Markus,et al.  Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Ronald E. McRoberts,et al.  Effects of uncertainty in model predictions of individual tree volume on large area volume estimates , 2014 .

[18]  Göran Ståhl,et al.  Sample-Based Estimation of Greenhouse Gas Emissions From Forests—A New Approach to Account for Both Sampling and Model Errors , 2014 .

[19]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[20]  R. Sturrock,et al.  Anticipating the consequences of climate change for Canada’s boreal forest ecosystems1 , 2013 .

[21]  BoisvenueC.,et al.  Carbon in Canada’s boreal forest — A synthesis1 , 2013 .

[22]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[23]  Göran Ståhl,et al.  A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys , 2013 .

[24]  Nicholas C. Coops,et al.  Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada , 2013 .

[25]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[26]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[27]  Sharon W. Woudenberg,et al.  The Forest Inventory and Analysis Database: Database Description and Users Manual Version 4.0 for Phase 2 , 2012 .

[28]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[29]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[30]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[31]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[32]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[33]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[34]  R. Hall,et al.  Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest , 2011, Global Change Biology.

[35]  W. Kurz,et al.  An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008 , 2011, Global Change Biology.

[36]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[37]  J. Brandt The extent of the North American boreal zone , 2009 .

[38]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[39]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[40]  Alan S. Cantin,et al.  Future emissions from Canadian boreal forest fires , 2009 .

[41]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[42]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[43]  W. Kurz,et al.  Mountain pine beetle and forest carbon feedback to climate change , 2008, Nature.

[44]  Paul W. Stackhouse,et al.  Climate-induced boreal forest change: Predictions versus current observations , 2007 .

[45]  D. Roy,et al.  Global Mapping of Fire-affected Areas using Multitemporal MODIS Data: The MCD45 Product , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[46]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[47]  Ross Nelson,et al.  Locating and estimating the extent of Delmarva fox squirrel habitat using an airborne LiDAR profiler , 2005 .

[48]  M. Flannigan,et al.  Past, Current and Future Fire Frequency in the Canadian Boreal Forest: Implications for Sustainable Forest Management , 2004, Ambio.

[49]  W. Kurz,et al.  National level forest monitoring and modeling in Canada , 2004 .

[50]  Ronald J. Hall,et al.  Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program , 2003 .

[51]  R. Nelson,et al.  A Multiple Resource Inventory of Delaware Using Airborne Laser Data , 2003 .

[52]  Ross Nelson,et al.  A Portable Airborne Laser System for Forest Inventory , 2003 .

[53]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[54]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[55]  R. Nelson,et al.  Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations , 2017 .

[56]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[57]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[58]  S. Magnussen,et al.  Model-based, volume-to-biomass conversion for forested and vegetated land in Canada , 2007 .