A theory of moving form perception: Synergy between masking, perceptual grouping, and motion computation in retinotopic and non-retinotopic representations

Because object and self-motion are ubiquitous in natural viewing conditions, understanding how the human visual system achieves a relatively clear perception for moving objects is a fundamental problem in visual perception. Several studies have shown that the visible persistence of a briefly presented stationary stimulus is approximately 120 ms under normal viewing conditions. Based on this duration of visible persistence, we would expect moving objects to appear highly blurred. However, in human vision, objects in motion typically appear relatively sharp and clear. We suggest that clarity of form in dynamic viewing is achieved by a synergy between masking, perceptual grouping, and motion computation across retinotopic and non-retinotopic representations. We also argue that dissociations observed in masking are essential to create and maintain this synergy.

[1]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[2]  M. C. Smith,et al.  Detection in metacontrast. , 1966, Journal of experimental psychology.

[3]  A. Michotte,et al.  Les compléments amodaux des structures perceptives , 1964 .

[4]  J. Ternus Experimentelle Untersuchungen über phänomenale Identität , 1926 .

[5]  M. Coltheart,et al.  Iconic memory and visible persistence , 1980, Perception & psychophysics.

[6]  D. Burr Motion smear , 1980, Nature.

[7]  J Timothy Petersik,et al.  Do variables that affect similar bistable apparent-movement displays result in similar changes in perception? , 2003, Spatial vision.

[8]  Saumil S. Patel,et al.  Color and motion: which is the tortoise and which is the hare? , 2003, Vision Research.

[9]  Ralph Norman Haber,et al.  Post-retinal storage? Some further observations on Parks’ camel as seen through the eye of a needle , 1968 .

[10]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[11]  V C Smith,et al.  Temporal and spatial interactions involved in the band movement phenomenon. , 1969, Vision research.

[12]  S. Nishida Motion-Based Analysis of Spatial Patterns by the Human Visual System , 2004, Current Biology.

[13]  J M Findlay,et al.  Aperture Viewing*: A Review and a Synthesis , 1982, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[14]  G. Francis,et al.  Cortical dynamics of lateral inhibition: metacontrast masking. , 1997, Psychological review.

[15]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  John H Hogben,et al.  Suppression of visible persistence. , 1985, Journal of experimental psychology. Human perception and performance.

[17]  J. Enns Visual binding in the standing wave illusion , 2002, Psychonomic bulletin & review.

[18]  Harold E. Bedell,et al.  Asymmetry of perceived motion smear during head and eye movements: Evidence for a dichotomous neural categorization of retinal image motion , 2005, Vision Research.

[19]  B G Breitmeyer,et al.  Metacontrast investigations of sustained-transient channel inhibitory interactions. , 1981, Journal of experimental psychology. Human perception and performance.

[20]  Hans-Jochen Heinze,et al.  The effect of retinal stabilization on anorthoscopic percepts under free-viewing conditions , 2005, Vision Research.

[21]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  V. Lollo,et al.  Suppression of visible persistence in apparent motion , 1985, Perception & psychophysics.

[23]  David C Burr,et al.  Feature-based integration of orientation signals in visual search , 2000, Vision Research.

[24]  Jean Lorenceau,et al.  The inverse intensity effect is not lost with stimuli in apparent motion , 1993, Vision Research.

[25]  V C Smith,et al.  Scotopic and photopic functions for visual band movement. , 1969, Vision research.

[26]  Haluk Öğmen,et al.  Perceptual grouping induces non-retinotopic feature attribution in human vision , 2006, Vision Research.

[27]  Bruno G. Breitmeyer,et al.  On the role of stroboscopic motion in metacontrast , 1981 .

[28]  Alan C. Evans,et al.  The Neural Substrate of Picture Naming , 1999, Journal of Cognitive Neuroscience.

[29]  Haluk Öğmen,et al.  Target recovery in metacontrast: The effect of contrast , 2006, Vision Research.

[30]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[31]  H. Werner Studies on Contour: I. Qualitative Analyses , 1935 .

[32]  Kees Teunissen,et al.  Perceived sharpness in complex moving images , 1995 .

[33]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  P. A. Kolers Aspects of motion perception , 1972 .

[35]  J. Lund,et al.  Compulsory averaging of crowded orientation signals in human vision , 2001, Nature Neuroscience.

[36]  A Pantle,et al.  A multistable movement display: evidence for two separate motion systems in human vision. , 1976, Science.

[37]  W. McDougall THE SENSATIONS EXCITED BY A SINGLE MOMENTARY STIMULATION OF THE EYE , 1904 .

[38]  P. A. Kolers,et al.  On visual masking (metacontrast): dichoptic observation. , 1960, The American journal of psychology.

[39]  Harold E Bedell,et al.  Suppression of motion-produced smear during smooth pursuit eye movements , 1996, Current Biology.

[40]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[41]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[42]  Shelford Bidwell Curiosities of Light and Sight , 1899, Nature.

[43]  Lester A. Lefton,et al.  Metacontrast: A review. , 1973 .

[44]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[45]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[46]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C Casco,et al.  The Relationship between Space and Time in the Perception of Stimuli Moving behind a Slit , 1984, Perception.

[48]  I Rock,et al.  Anorthoscopic perception. , 1981, Scientific American.

[49]  F. Zöllner,et al.  Ueber eine neue Art anorthoskopischer Zerrbilder , 1862 .

[50]  Shinsuke Shimojo,et al.  Dynamic Shape Integration in Extrastriate Cortex , 2002, Current Biology.

[51]  A. Stoper,et al.  Relation of split apparent motion to metacontrast. , 1977, Journal of experimental psychology. Human perception and performance.

[52]  S Zeki,et al.  Parallelism and functional specialization in human visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[53]  Naomi Weisstein,et al.  Metacontrast as a function of spatial separation with narrow line targets and masks , 1977, Vision Research.

[54]  T. Allison,et al.  Face recognition in human extrastriate cortex. , 1994, Journal of neurophysiology.

[55]  D. Raab,et al.  Reaction time to stimuli masked by metacontrast. , 1962, Journal of experimental psychology.

[56]  Zijiang J. He,et al.  Perceptual Organization of Apparent Motion in the Ternus Display , 1999, Perception.

[57]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  Joyce E. Farrell,et al.  The visible persistence of stimuli in stroboscopic motion , 1990, Vision Research.

[59]  V. Lollo,et al.  Suppression of visible persistence as a function of spatial separation between inducing stimuli , 1987, Perception & psychophysics.

[60]  M J Watkins,et al.  The seeing-more-than-is-there phenomenon: implications for the locus of iconic storage. , 1978, Journal of experimental psychology. Human perception and performance.

[61]  W Richards,et al.  “Seeing” shapes that are almost totally occluded: A new look at Parks’s camel , 1986, Perception & psychophysics.

[62]  S Zeki,et al.  The autonomy of the visual systems and the modularity of conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  S. Yantis,et al.  Perceptual grouping in space and time: Evidence from the Ternus display , 1997, Perception & psychophysics.

[64]  A. Wilson,et al.  Transposition in backward masking the case of the travelling gap , 1985, Vision Research.

[65]  Haluk Ögmen,et al.  A neural theory of retino-cortical dynamics , 1993, Neural Networks.

[66]  T. Sohmiya,et al.  Where Does an Anorthoscopic Image Appear? , 1992, Perceptual and motor skills.

[67]  John J. Foxe,et al.  Activation Timecourse of Ventral Visual Stream Object-recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes , 2000, Journal of Cognitive Neuroscience.

[68]  Colin W G Clifford,et al.  Determinants of asynchronous processing in vision , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  Jonathan A. Marshall,et al.  Unsmearing Visual Motion: Development of Long-Range Horizontal Intrinsic Connections , 1992, NIPS.

[70]  Eric Castet,et al.  Effect of the ISI on the visible persistence of a stimulus in apparent motion , 1994, Vision Research.

[71]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[72]  C. A. Marzi,et al.  A possible selective impairment of magnocellular function in compression of the anterior visual pathways , 1999, Experimental Brain Research.

[73]  N. F. Dixon,et al.  The attenuation of visual persistence. , 1972, British journal of psychology.

[74]  Haluk Ogmen,et al.  The what and where in visual masking , 2003, Vision Research.

[75]  Harold E. Bedell,et al.  A target in real motion appears blurred in the absence of other proximal moving targets , 1995, Vision Research.

[76]  D. Mewhort,et al.  When do letter features migrate? A boundary condition for feature-integration theory , 1991, Perception & psychophysics.

[77]  T. Parks POST-RETINAL VISUAL STORAGE. , 1965, The American journal of psychology.

[78]  B G Breitmeyer,et al.  Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. , 1976, Psychological review.

[79]  J Timothy Petersik,et al.  The Evolution of Explanations of a Perceptual Phenomenon: A Case History Using the Ternus Effect , 2006, Perception.

[80]  S Zeki,et al.  Localization and globalization in conscious vision. , 2001, Annual review of neuroscience.

[81]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[82]  Stephen Grossberg,et al.  A neural architecture for visual motion perception: group and element apparent motion , 1989, International 1989 Joint Conference on Neural Networks.

[83]  Talis Bachmann Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience , 1994 .

[84]  Christof Koch,et al.  Fusion of competing features is not serial , 2003, Vision Research.

[85]  M. Morgan,et al.  Effects of motion on blur discrimination , 1994 .

[86]  T. Sohmiya,et al.  What is a crucial determinant in anorthoscopic perception? , 1994, Perceptual and motor skills.

[87]  Mina Kim,et al.  Combining Functional and Diffusion Tensor MRI , 2005, Annals of the New York Academy of Sciences.

[88]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[89]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[90]  S. Grossberg,et al.  Cortical dynamics of feature binding and reset: Control of visual persistence , 1994, Vision Research.

[91]  J E Farrell Visible persistence of moving objects. , 1984, Journal of experimental psychology. Human perception and performance.