17 – Creep strength of welded joints of ferritic steels

[1]  R. Sandström,et al.  The Effect of Multiaxiality on the Evaluation of Weldment Strength Reduction Factors in High-Temperature Creep , 1994 .

[2]  Masayoshi Yamazaki,et al.  Creep damage evaluation of 9Cr–1Mo–V–Nb steel welded joints showing Type IV fracture , 2006 .

[3]  Kiyoshi Kubo,et al.  Microstructural Investigations on Type IV Cracking in a High Cr Steel , 2002 .

[4]  K. Shinozaki,et al.  Analysis of Degradation of Creep Strength in Heat-affected Zone of Weldment of High Cr Heat-resisting Steels Based on Void Observation , 2002 .

[5]  Henrik Andersson,et al.  Structural changes in 12–2.25% Cr weldments – an experimental and theoretical approach , 2000 .

[6]  John Hald,et al.  Analysis of creep in a welded ‘P91’ pressure vessel , 1994 .

[7]  F. Yin,et al.  Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints , 2006 .

[8]  A. Dhooge,et al.  Reheat cracking—A review of recent studies☆ , 1987 .

[9]  D. Rosenthal Mathematical Theory of Heat Distribution during Welding and Cutting , 1941 .

[10]  F. Abe,et al.  Microstructure and creep strength of welds in advanced ferritic power plant steels , 2004 .

[11]  F. Abe,et al.  Improvement of Creep Strength of Advanced Ferritic Steel Welded Joints , 2005 .

[12]  K. Shinozaki,et al.  Stress-strain analysis of creep deterioration in heat affected weld zone in high Cr ferritic heat resistant steel , 2003 .

[13]  David R Hayhurst,et al.  Continuum damage mechanics analyses of type IV creep failure in ferritic steel crossweld specimens , 1999 .

[14]  Yukio Takahashi,et al.  Evaluation of Creep Strength Reduction Factors for Welded Joints of HCM12A (P122) , 2006 .

[15]  D. J. Allen,et al.  FOURCRACK - : An investigation of the creep performance of advanced high alloy steel welds , 2007 .

[16]  David J. Smith,et al.  Type IV creep cavity accumulation and failure in steel welds , 2003 .

[17]  Fujimitsu Masuyama,et al.  Creep rupture life and design factors for high-strength ferritic steels , 2007 .

[18]  T. Sakurai,et al.  A trigger of Type IV damage and a new heat treatment procedure to suppress it. Microstructural investigations of long-term ex-service Cr–Mo steel pipe elbows , 2005 .

[19]  J. Goldak,et al.  A new finite element model for welding heat sources , 1984 .

[20]  A. Czyrska-Filemonowicz,et al.  Recent advances in creep-resistant steels for power plant applications , 2003 .

[21]  S. Holmström,et al.  Heat-affected zone toughness behaviour and reheat cracking susceptibility of thermally simulated microstructures in new P23(7CrWVMoNb9-6)steel , 2006 .

[22]  Yukio Takahashi,et al.  Evaluation of Creep Strength Reduction Factors for Welded Joints of Modified 9Cr-1Mo Steel (P91) , 2006 .

[23]  J. R. Foulds,et al.  Failure experience with seam-welded hot reheat pipes in the USA , 1995 .

[24]  Kiyoshi Kubo,et al.  Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel , 2001 .

[25]  D. Smith,et al.  On the relaxation of interface stresses during creep of ferritic steel weldments , 1998 .

[26]  R. C. Reed,et al.  A simple model for multipass steel welds , 1994 .

[27]  John Francis,et al.  Review Type IV cracking in ferritic power plant steels , 2006 .

[28]  J. D. Parker,et al.  Strain localization in creep testing of samples with heterogeneous microstructures , 1996 .

[29]  Isamu Nonaka,et al.  Type IV Creep Damage Analysis for Full Size Component Test on Welded P91 Boiler Hot Reheat Piping , 2004 .

[30]  Shan-Tung Tu,et al.  Strength design and life assessment of welded structures subjected to high temperature creep , 1996 .

[31]  C. V. Robino,et al.  The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part I: Single-Pass Heat-Affected Zone Simulations , 1999 .

[32]  S. Brett Type IIIa cracking in ½ CrMoV steam pipework systems , 2004 .