A Proof of Standard Completeness for Esteva and Godo's Logic MTL

In the present paper we show that any at most countable linearly-ordered commutative residuated lattice can be embedded into a commutative residuated lattice on the real unit interval [0, 1]. We use this result to show that Esteva and Godo's logic MTL is complete with respect to interpretations into commutative residuated lattices on [0, 1]. This solves an open problem raised in.