Multiresolution analysis on the symmetric group
暂无分享,去创建一个
[1] D. Rockmore,et al. Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.
[2] Leonidas J. Guibas,et al. Fourier Theoretic Probabilistic Inference over Permutations , 2009, J. Mach. Learn. Res..
[3] Michael Clausen,et al. Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..
[4] Daniel N. Rockmore,et al. Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II , 2015, Discrete Mathematics & Theoretical Computer Science.
[5] Ronald R. Coifman,et al. Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and Applications to Semi Supervised Learning , 2010, ICML.
[6] Leonidas J. Guibas,et al. Exploiting Probabilistic Independence for Permutations , 2009, AISTATS.
[7] Pierre Vandergheynst,et al. Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.
[8] P. Diaconis. Group representations in probability and statistics , 1988 .
[9] R. Coifman,et al. Diffusion Wavelets , 2004 .
[10] Arthur D. Szlam,et al. Diffusion wavelet packets , 2006 .
[11] Tony Jebara,et al. Multi-object tracking with representations of the symmetric group , 2007, AISTATS.
[12] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Leonidas J. Guibas,et al. Fourier-Information Duality in the Identity Management Problem , 2011, ECML/PKDD.
[14] Peter F. Stadler,et al. Fast Fourier Transform for Fitness Landscapes , 2002 .
[15] Devavrat Shah,et al. Inferring rankings under constrained sensing , 2008, NIPS.