Assessment of Rheological and Piezoresistive Properties of Graphene based Cement Composites

[1]  Obaid ur Rehman,et al.  Energy and Ecological Sustainability: Challenges and Panoramas in Belt and Road Initiative Countries , 2018, Sustainability.

[2]  Sardar Kashif Ur Rehman,et al.  Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites , 2018 .

[3]  Yuejin Tan,et al.  Sustainable Queuing-Network Design for Airport Security Based on the Monte Carlo Method , 2018 .

[4]  Waiching Tang,et al.  A critical review on research progress of graphene/cement based composites , 2017 .

[5]  Shazim Ali Memon,et al.  FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete , 2017 .

[6]  Shazim Ali Memon,et al.  Recent research on cold-formed steel beams and columns subjected to elevated temperature: A review , 2017 .

[7]  Sardar Kashif Ur Rehman,et al.  A Sustainable Graphene Based Cement Composite , 2017 .

[8]  Jian Wang,et al.  Effect of fly ash on rheological properties of graphene oxide cement paste , 2017 .

[9]  Qin Wang,et al.  Rheological behavior of fresh cement pastes with a graphene oxide additive , 2016 .

[10]  A. Govin,et al.  Modification of water retention and rheological properties of fresh state cement-based mortars by guar gum derivatives , 2016 .

[11]  M. Cao,et al.  Effect of graphene on mechanical properties of cement mortars , 2016 .

[12]  Zainah Ibrahim,et al.  Nondestructive test methods for concrete bridges: A review , 2016 .

[13]  Yong Liu,et al.  Effect of graphene oxide on the rheological properties of cement pastes , 2015 .

[14]  Dan Li,et al.  Mechanical properties and microstructure of a graphene oxide-cement composite , 2015 .

[15]  J. Harvey,et al.  Comparison of Concentric Cylinder and Parallel Plate Geometries for Asphalt Binder Testing with a Dynamic Shear Rheometer , 2015 .

[16]  Jay G. Sanjayan,et al.  Nano reinforced cement and concrete composites and new perspective from graphene oxide , 2014 .

[17]  Jia-Liang Le,et al.  Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation , 2014 .

[18]  Ser Tong Quek,et al.  Smart multifunctional cement mortar containing graphite nanoplatelet , 2013, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  Surendra P. Shah,et al.  Modification of cement-based materials with nanoparticles , 2013 .

[20]  Francis Gerard Collins,et al.  The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures , 2012 .

[21]  Darren J. Martin,et al.  Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement , 2011 .

[22]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[23]  Frank Winnefeld,et al.  Correlating cement characteristics with rheology of paste , 2007 .

[24]  G. de Schutter,et al.  Evaluation of Time Independent Rheological Models Applicable to Fresh Self-Compacting Concrete , 2007 .

[25]  Hui Li,et al.  Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites , 2006 .

[26]  Nicolas Roussel,et al.  A thixotropy model for fresh fluid concretes: Theory, validation and applications , 2006 .

[27]  Moncef L. Nehdi,et al.  Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction , 2004 .

[28]  Hui Li,et al.  A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials , 2004 .

[29]  Kamal H. Khayat,et al.  Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture , 2003 .

[30]  D. Chung,et al.  Piezoresistive Cement-Based Materials for Strain Sensing , 2002 .

[31]  Kamal H. Khayat,et al.  Analytical models for estimating yield stress of high-performance pseudoplastic grout , 2001 .

[32]  Chiara F. Ferraris,et al.  Measurement of the Rheological Properties of Cement Paste: A New Approach | NIST , 1999 .

[33]  Edward J. Garboczi,et al.  Analytical formulas for interfacial transition zone properties , 1997 .

[34]  T. Hemphill,et al.  Yield-power law model more accurately predicts mud rheology , 1993 .

[35]  Richard Shaughnessy,et al.  The rheological behavior of fresh cement pastes , 1988 .

[36]  Howard A. Barnes,et al.  The yield stress myth? , 1985 .

[37]  G. W. Blair The success of Casson's equation , 1966 .

[38]  L. B. Valdes,et al.  Resistivity Measurements on Germanium for Transistors , 1954, Proceedings of the IRE.

[39]  Fabio Matta,et al.  Graphene Nanoreinforcement for Cement Composites , 2015 .

[40]  M. A. Rao Flow and Functional Models for Rheological Properties of Fluid Foods , 2014 .

[41]  Nima Zohhadi Functionalized Graphitic Nanoreinforcement for Cement Composites , 2014 .

[42]  M. A. Rao,et al.  Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications , 2014 .

[43]  Ammar Yahia,et al.  Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers , 2013 .

[44]  Nicolas Roussel,et al.  The origins of thixotropy of fresh cement pastes , 2012 .

[45]  Jon Elvar Wallevik,et al.  Rheological properties of cement paste: Thixotropic behavior and structural breakdown , 2009 .

[46]  Evan Mitsoulis,et al.  FLOWS OF VISCOPLASTIC MATERIALS: MODELS AND COMPUTATIONS , 2007 .

[47]  Phillip Frank Gower Banfill,et al.  Rheology of fresh cement and concrete , 1991 .

[48]  A. Papo,et al.  Rheological models for cement pastes , 1988 .

[49]  Phillip Frank Gower Banfill,et al.  The rheology of fresh concrete , 1983 .

[50]  N. Casson,et al.  A flow equation for pigment-oil suspensions of the printing ink type , 1959 .

[51]  E. C. Bingham Fluidity And Plasticity , 1922 .