Clustering by Minimum Cut Hyperplanes
暂无分享,去创建一个
[1] Vipin Kumar,et al. The Challenges of Clustering High Dimensional Data , 2004 .
[2] Dimitris K. Tasoulis,et al. Enhancing principal direction divisive clustering , 2010, Pattern Recognit..
[3] S. Kutin. Extensions to McDiarmid's inequality when dierences are bounded with high probability , 2002 .
[4] Mechthild Stoer,et al. A simple min-cut algorithm , 1997, JACM.
[5] Ivor W. Tsang,et al. Maximum Margin Clustering Made Practical , 2009, IEEE Trans. Neural Networks.
[6] Mikhail Belkin,et al. Consistency of spectral clustering , 2008, 0804.0678.
[7] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[8] Adrian S. Lewis,et al. Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.
[9] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[10] Daniel Boley,et al. Principal Direction Divisive Partitioning , 1998, Data Mining and Knowledge Discovery.
[11] MalikJitendra,et al. Spectral Grouping Using the Nyström Method , 2004 .
[12] Dale Schuurmans,et al. Maximum Margin Clustering , 2004, NIPS.
[13] Nicos G. Pavlidis,et al. Minimum Density Hyperplanes , 2015, J. Mach. Learn. Res..
[14] Ling Huang,et al. Fast approximate spectral clustering , 2009, KDD.
[15] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[16] V. Vapnik. Estimation of Dependences Based on Empirical Data , 2006 .
[17] John Quackenbush,et al. Genesis: cluster analysis of microarray data , 2002, Bioinform..
[18] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[19] Andrew B. Kahng,et al. New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[20] Hans-Peter Kriegel,et al. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.
[21] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[22] Pasi Fränti,et al. Iterative shrinking method for clustering problems , 2006, Pattern Recognit..
[23] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.
[24] Mikhail Belkin,et al. On the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts , 2006, NIPS.
[25] G. Karypis,et al. Criterion Functions for Document Clustering ∗ Experiments and Analysis , 2001 .
[26] Girish N. Punj,et al. Cluster Analysis in Marketing Research: Review and Suggestions for Application , 1983 .
[27] Suman Tatiraju. Image Segmentation using k-means clustering , EM and Normalized Cuts , 2008 .
[28] George Karypis,et al. A Comparison of Document Clustering Techniques , 2000 .
[29] Dorothea Wagner,et al. Between Min Cut and Graph Bisection , 1993, MFCS.
[30] Julia Hirschberg,et al. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.