An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell
暂无分享,去创建一个
[1] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[2] Charles W. Tobias,et al. Resistance to Potential Flow through a Cubical Array of Spheres , 1959 .
[3] Charles W. Tobias,et al. On the Conductivity of Dispersions , 1959 .
[4] John Newman,et al. A General Energy Balance for Battery Systems , 1984 .
[5] James W. Evans,et al. Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .
[6] M. Doyle,et al. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .
[7] M. Doyle,et al. Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .
[8] M. Doyle,et al. Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .
[9] J. Newman,et al. Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .
[10] D. D. MacNeil,et al. Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .
[11] Ralph B. Dinwiddie,et al. Thermal properties of lithium-ion battery and components , 1999 .
[12] J. Dahn,et al. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves , 1999 .
[13] J. Dahn,et al. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .
[14] D. D. MacNeil,et al. An Autocatalytic Mechanism for the Reaction of Li x CoO2 in Electrolyte at Elevated Temperature , 2000 .
[15] Karen E. Thomas,et al. Mathematical Modeling of Lithium Batteries , 2002 .
[16] D. Aurbach. The Role of Surface Films on Electrodes in Li-Ion Batteries , 2002 .
[17] John B. Kerr,et al. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .
[18] J. Newman,et al. Thermal Modeling of Porous Insertion Electrodes , 2003 .
[19] Marc Doyle,et al. Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .
[20] Lars Ole Valøen,et al. Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .
[21] V. Subramanian,et al. Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .
[22] J. Newman,et al. Modeling Side Reactions and Nonisothermal Effects in Nickel Metal-Hydride Batteries , 2008 .
[23] K. Zaghib,et al. Quantifying tortuosity in porous Li-ion battery materials , 2009 .
[24] John Newman,et al. Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries , 2009 .
[25] Jasim Ahmed,et al. Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.
[26] T. Fuller,et al. A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .
[28] Delphine Guy-Bouyssou,et al. Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model , 2011 .
[29] An Efficient Multiscale Model of a Spirally-Wound Li-Ion Cell , 2011 .
[30] D. Jeon,et al. Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .
[31] Shriram Santhanagopalan,et al. Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .
[33] Somani Patnaik. An electrical network model for computing current distribution in a spirally wound lithium ion cell , 2012 .
[34] R. Spotnitz,et al. Electrothermal Simulation of Spirally-Wound Lithium Ion Cells , 2012 .
[35] Robert Spotnitz,et al. Design and Simulation of Spirally-Wound, Lithium-Ion Cells , 2013 .
[36] J. Christensen,et al. Thermoelectrochemical simulations of performance and abuse in 50-Ah automotive cells , 2014 .