An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell

[1]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[2]  Charles W. Tobias,et al.  Resistance to Potential Flow through a Cubical Array of Spheres , 1959 .

[3]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[4]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[5]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[6]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[7]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[8]  M. Doyle,et al.  Relaxation Phenomena in Lithium‐Ion‐Insertion Cells , 1994 .

[9]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[10]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[11]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .

[12]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves , 1999 .

[13]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[14]  D. D. MacNeil,et al.  An Autocatalytic Mechanism for the Reaction of Li x CoO2 in Electrolyte at Elevated Temperature , 2000 .

[15]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[16]  D. Aurbach The Role of Surface Films on Electrodes in Li-Ion Batteries , 2002 .

[17]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[18]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[19]  Marc Doyle,et al.  Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .

[20]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[21]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[22]  J. Newman,et al.  Modeling Side Reactions and Nonisothermal Effects in Nickel Metal-Hydride Batteries , 2008 .

[23]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[24]  John Newman,et al.  Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries , 2009 .

[25]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[26]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[27]  A Three-Dimensional Lithium-Ion Battery Model that Includes Thermal, Electrical and Electrochemical Behavior: II. The Effects of Electric Potential and Thermal Variations on Cell Aging , 2011 .

[28]  Delphine Guy-Bouyssou,et al.  Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model , 2011 .

[29]  An Efficient Multiscale Model of a Spirally-Wound Li-Ion Cell , 2011 .

[30]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .

[31]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[32]  A Three-Dimensional Lithium-Ion Battery Model that Includes Thermal, Electrical and Electrochemical Behavior: I. Model Description and Validation , 2011 .

[33]  Somani Patnaik An electrical network model for computing current distribution in a spirally wound lithium ion cell , 2012 .

[34]  R. Spotnitz,et al.  Electrothermal Simulation of Spirally-Wound Lithium Ion Cells , 2012 .

[35]  Robert Spotnitz,et al.  Design and Simulation of Spirally-Wound, Lithium-Ion Cells , 2013 .

[36]  J. Christensen,et al.  Thermoelectrochemical simulations of performance and abuse in 50-Ah automotive cells , 2014 .