Adapting an Automatic Speech Recognition System to Event Classification of Electroencephalograms1
暂无分享,去创建一个
I. Obeid | J. Picone | R. Anstotz | V. Shah
[1] Joseph Picone,et al. The Temple University Hospital EEG Data Corpus , 2016, Front. Neurosci..
[2] W. Marsden. I and J , 2012 .
[3] Sanjeev Khudanpur,et al. Parallel training of DNNs with Natural Gradient and Parameter Averaging , 2014 .
[4] Van Nostrand,et al. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .
[5] K. Jellinger,et al. Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn , 2011 .
[6] Joseph Picone,et al. Objective evaluation metrics for automatic classification of EEG events , 2017, ArXiv.
[7] Mark J. F. Gales,et al. Semi-tied covariance matrices for hidden Markov models , 1999, IEEE Trans. Speech Audio Process..
[8] Robert S. Fisher,et al. The Johns Hopkins atlas of digital EEG : an interactive training guide , 2006 .
[9] Joseph Picone,et al. Improved EEG event classification using differential energy , 2015, 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).
[10] Mark J. F. Gales,et al. Maximum likelihood linear transformations for HMM-based speech recognition , 1998, Comput. Speech Lang..
[11] J. Picone,et al. Continuous speech recognition using hidden Markov models , 1990, IEEE ASSP Magazine.
[12] Daniel Povey,et al. The Kaldi Speech Recognition Toolkit , 2011 .