CO2 Adducts of Carbodicarbenes: Robust and Versatile Organocatalysts for Chemical Transformation of Carbon Dioxide into Heterocyclic Compounds

Four CO2 adducts of carbodicarbenes (CDCs) were first synthesized and structurally characterized by means of NMR spectroscopy, high‐resolution mass spectrometry, and FTIR spectroscopy. The introduction of 13C‐labelled CO2 confirmed the formation of the corresponding carboxylated species. Thermogravimetric analysis (TGA) provided detailed information on their thermal decarboxylation processes. The novel CDC–CO2 adducts were subsequently applied as robust and versatile organocatalysts for the carboxylative cyclization of CO2 with aziridines, epoxides, or propargylic alcohols, affording 2‐oxazolidinones and cyclic carbonates in good to excellent yields (51–99 %) and high functional group tolerance. TGA results together with control experiments indicate that the in situ formed free CDC by decarboxylation of the corresponding CDC–CO2 adducts plays the key role to activate the substrates by its strong Lewis basicity.

[1]  Arjan W. Kleij,et al.  Polystyrene-supported bifunctional resorcinarenes as cheap, metal-free and recyclable catalysts for epoxide/CO2 coupling reactions , 2017 .

[2]  G. Yap,et al.  Invisible Chelating Effect Exhibited between Carbodicarbene and Phosphine through π–π Interaction and Implication in the Cross-Coupling Reaction , 2017 .

[3]  S. Meek,et al.  Chiral Pincer Carbodicarbene Ligands for Enantioselective Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-Dienes with Indoles. , 2017, Journal of the American Chemical Society.

[4]  Allegra L. Liberman-Martin,et al.  Ruthenium Olefin Metathesis Catalysts Featuring a Labile Carbodicarbene Ligand , 2017 .

[5]  Hui Zhou,et al.  CO2 Adducts of α‐Carbon Alkylated N‐Heterocyclic Olefins: Highly Active Organocatalysts for CO2 Chemical Transformation , 2017 .

[6]  G. Frenking,et al.  Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. , 2017, Journal of the American Chemical Society.

[7]  Jian Zhou,et al.  Activation of (salen)CoI complex by phosphorane for carbon dioxide transformation at ambient temperature and pressure , 2017 .

[8]  Liang‐Nian He,et al.  Efficient, selective and sustainable catalysis of carbon dioxide , 2017 .

[9]  T. Werner,et al.  Poly(ethylene glycol)s as Ligands in Calcium-Catalyzed Cyclic Carbonate Synthesis. , 2017, ChemSusChem.

[10]  A. Kleij,et al.  Substrate-Triggered Stereoselective Preparation of Highly Substituted Organic Carbonates , 2017 .

[11]  Junling Lu,et al.  Metal-Organic Framework-Templated Catalyst: Synergy in Multiple Sites for Catalytic CO2 Fixation. , 2017, ChemSusChem.

[12]  Arjan W. Kleij,et al.  Pushing the Limits with Squaramide-Based Organocatalysts in Cyclic Carbonate Synthesis , 2017 .

[13]  Hui Zhou,et al.  Lewis base-CO2 adducts as organocatalysts for CO2 transformation , 2017, Science China Chemistry.

[14]  Liang‐Nian He,et al.  Heterogeneous Catalysis for Oxazolidinone Synthesis from Aziridines and CO2 , 2017 .

[15]  Liang‐Nian He,et al.  In Situ Generated Zinc(II) Catalyst for Incorporation of CO2 into 2-Oxazolidinones with Propargylic Amines at Atmospheric Pressure. , 2017, ChemSusChem.

[16]  M. Fan,et al.  Efficient Ionic-Liquid-Promoted Chemical Fixation of CO2 into α-Alkylidene Cyclic Carbonates. , 2017, ChemSusChem.

[17]  Bing Yu,et al.  Cyanuric Acid-Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure. , 2017, ChemSusChem.

[18]  C. Wulf,et al.  Organocatalyzed Synthesis of Oleochemical Carbonates from CO2 and Renewables. , 2017, ChemSusChem.

[19]  Zhenshan Hou,et al.  Inclusion complexes of organic salts with β-cyclodextrin as organocatalysts for CO2 cycloaddition with epoxides , 2017 .

[20]  Hai‐Long Jiang,et al.  One-step assembly of a hierarchically porous phenolic resin-type polymer with high stability for CO2 capture and conversion. , 2016, Chemical communications.

[21]  Yugen Zhang,et al.  Facile synthesis of N-rich porous azo-linked frameworks for selective CO2 capture and conversion , 2016 .

[22]  B. Bhanage,et al.  N-Heterocyclic Olefins as Robust Organocatalyst for the Chemical Conversion of Carbon Dioxide to Value-Added Chemicals. , 2016, ChemSusChem.

[23]  Zhi Ma,et al.  Hierarchically Mesoporous o-Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion. , 2016, Angewandte Chemie.

[24]  T. Yamada,et al.  Silver-catalyzed carboxylation. , 2016, Chemical Society reviews.

[25]  Faliang Gou,et al.  Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(III) complexes , 2016 .

[26]  N. Yang,et al.  Theoretical Insights into the Catalytic Mechanism of N-Heterocyclic Olefins in Carboxylative Cyclization of Propargyl Alcohol with CO2. , 2016, The Journal of organic chemistry.

[27]  Liang‐Nian He,et al.  Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions , 2016 .

[28]  R. Huo,et al.  The mechanisms for N-heterocyclic olefin-catalyzed formation of cyclic carbonate from CO2 and propargylic alcohols , 2016, Journal of Molecular Modeling.

[29]  Wen-Zhen Zhang,et al.  Ni-catalyzed direct carboxylation of unactivated alkyl electrophiles with carbon dioxide , 2016 .

[30]  Zhi Ma,et al.  Metalated Mesoporous Poly(triphenylphosphine) with Azo Functionality: Efficient Catalysts for CO2 Conversion , 2016 .

[31]  B. Han,et al.  Zinc(II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature , 2016 .

[32]  Liang‐Nian He,et al.  An efficient and recyclable tetraoxo-coordinated zinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure , 2016 .

[33]  Liang‐Nian He,et al.  Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(II)-substituted polyoxometalate-based ionic liquids , 2016 .

[34]  T. Jurca,et al.  Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. , 2015, Angewandte Chemie.

[35]  Yugen Zhang,et al.  Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion. , 2015, Chemical communications.

[36]  Hui Zhou,et al.  CO2 Adducts of Phosphorus Ylides: Highly Active Organocatalysts for Carbon Dioxide Transformation , 2015 .

[37]  Yugen Zhang,et al.  Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion. , 2015, Chemical communications.

[38]  Hui Zhou,et al.  CO2, COS and CS2 adducts of N-heterocyclic olefins and their application as organocatalysts for carbon dioxide fixation , 2015 .

[39]  Matthew J. Goldfogel,et al.  Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. , 2015, Journal of the American Chemical Society.

[40]  B. Han,et al.  Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. , 2015, Angewandte Chemie.

[41]  D. Stephan,et al.  Cyclic bent allene hydrido-carbonyl complexes of ruthenium: highly active catalysts for hydrogenation of olefins. , 2015, Journal of the American Chemical Society.

[42]  C. Chen,et al.  Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates , 2015 .

[43]  Chao‐Ping Hsu,et al.  Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and studies on its structural implications and reactivities. , 2015, Angewandte Chemie.

[44]  Liang‐Nian He,et al.  Catalytic conversion of carbon dioxide to carboxylic acid derivatives , 2015 .

[45]  Xiangping Zhang,et al.  Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach , 2015 .

[46]  Liang‐Nian He,et al.  Upgrading carbon dioxide by incorporation into heterocycles. , 2015, ChemSusChem.

[47]  Nicolaas A. Vermeulen,et al.  A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. , 2014, Journal of the American Chemical Society.

[48]  Zhi Ma,et al.  Fluorinated microporous organic polymers: design and applications in CO₂ adsorption and conversion. , 2014, Chemical communications.

[49]  S. Qiao,et al.  Acid–Base Bifunctional Periodic Mesoporous Metal Phosphonates for Synergistically and Heterogeneously Catalyzing CO2 Conversion , 2014 .

[50]  Wei-Min Ren,et al.  Bifunctional aluminum catalyst for CO2 fixation: regioselective ring opening of three-membered heterocyclic compounds. , 2014, The Journal of organic chemistry.

[51]  B. Nguyen,et al.  Observation of guanidine–carbon dioxide complexation in solution and its role in the reaction of carbon dioxide and propargylamines , 2014 .

[52]  Kayla A. Kitselman,et al.  Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures , 2014 .

[53]  H. Yasuda,et al.  Aqueous media carboxylative cyclization of propargylic amines with CO2 catalyzed by amphiphilic dendritic N-heterocyclic carbene–gold(I) complexes , 2014 .

[54]  Suojiang Zhang,et al.  Functionalized dicyandiamide–formaldehyde polymers as efficient heterogeneous catalysts for conversion of CO2 into organic carbonates , 2014 .

[55]  Matthew J. Goldfogel,et al.  Intermolecular hydroamination of 1,3-dienes catalyzed by bis(phosphine)carbodicarbene-rhodium complexes. , 2014, Journal of the American Chemical Society.

[56]  Tohru Yamada,et al.  Novel method of tetramic acid synthesis: silver-catalyzed carbon dioxide incorporation into propargylic amine and intramolecular rearrangement. , 2014, Organic letters.

[57]  Hui Zhou,et al.  Alkoxide-functionalized imidazolium betaines for CO2 activation and catalytic transformation , 2014 .

[58]  Dae-Won Park,et al.  Aqueous-microwave synthesized carboxyl functional molecular ribbon coordination framework catalyst for the synthesis of cyclic carbonates from epoxides and CO2 , 2014 .

[59]  Michele Aresta,et al.  Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. , 2014, Chemical reviews.

[60]  Chao‐Ping Hsu,et al.  The elusive three-coordinate dicationic hydrido boron complex. , 2014, Journal of the American Chemical Society.

[61]  J. Yue,et al.  Organic carbonates from natural sources. , 2014, Chemical reviews.

[62]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[63]  T. Ikariya,et al.  NHC–Gold(I) Complexes as Effective Catalysts for the Carboxylative Cyclization of Propargylamines with Carbon Dioxide , 2013 .

[64]  Charlette M. Felton,et al.  Advancements in Oxazolidinone Synthesis Utilizing Carbon Dioxide as a C1 Source , 2013 .

[65]  Arjan W. Kleij,et al.  Stereoselective synthesis with carbon dioxide , 2013 .

[66]  Arjan W. Kleij,et al.  Catalyst Development in the Context of Ring Expansion–Addition of Carbon Dioxide to Epoxides to Give Organic Carbonates , 2013, Synlett.

[67]  Yi‐Ming Wang,et al.  Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. , 2013, Journal of the American Chemical Society.

[68]  Huanfeng Jiang,et al.  Polystyrene‐Supported N‐Heterocyclic Carbene–Silver Complexes as Robust and Efficient Catalysts for the Reaction of Carbon Dioxide and Propargylic Alcohols , 2013 .

[69]  Valerio D’Elia,et al.  Synthesis of Cyclic Carbonates from Epoxides and CO2 under Mild Conditions Using a Simple, Highly Efficient Niobium‐Based Catalyst , 2013 .

[70]  W. Leitner,et al.  Substrate dependent synergetic and antagonistic interaction of ammonium halide and polyoxometalate catalysts in the synthesis of cyclic carbonates from oleochemical epoxides and CO2 , 2013 .

[71]  D. Stephan,et al.  Three-Coordinate, Cyclic Bent Allene Iron Complexes , 2013 .

[72]  G. Yap,et al.  Synthetic Modification of Acyclic Bent Allenes (Carbodicarbenes) and Further Studies on Their Structural Implications and Reactivities , 2013 .

[73]  Arjan W. Kleij,et al.  A recyclable trinuclear bifunctional catalyst derived from a tetraoxo bis-Zn(salphen) metalloligand. , 2013, Chemistry.

[74]  T. Ikariya,et al.  Cycloaddition of tertiary aziridines and carbon dioxide using a recyclable organocatalyst, 1,3-di-tert-butylimidazolium-2-carboxylate: straightforward access to 3-substituted 2-oxazolidones , 2013 .

[75]  Huanfeng Jiang,et al.  Ni(salphen)-based metal–organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides , 2013 .

[76]  Masahiro Yoshida,et al.  Synthesis of oxazolidinones by efficient fixation of atmospheric CO2 with propargylic amines by using a silver/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) Dual-catalyst system. , 2012, Chemistry.

[77]  Arne Thomas,et al.  Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. , 2012, ChemSusChem.

[78]  S. Minakata,et al.  Cyclizative atmospheric CO2 fixation by unsaturated amines with t-BuOI leading to cyclic carbamates. , 2012, Organic letters.

[79]  Toshihiro Kimura,et al.  A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. , 2012, Angewandte Chemie.

[80]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[81]  Zhenzhen Yang,et al.  Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion , 2012 .

[82]  Wen-Zhen Zhang,et al.  Synthesis of Carboxylic Acids and Derivatives Using CO2 as Carboxylative Reagent , 2012 .

[83]  D. Darensbourg,et al.  Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. , 2012, Chemical Society reviews.

[84]  M. Carreon,et al.  Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate , 2012 .

[85]  C. Suresh,et al.  NHC catalyzed CO2 fixation with epoxides: Probable mechanisms reveal ter molecular pathway , 2011 .

[86]  B. Rieger,et al.  Umwandlung von Kohlendioxid mit Übergangsmetall‐Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? , 2011 .

[87]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[88]  Liang‐Nian He,et al.  Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions , 2011 .

[89]  Chang-Liang Sun,et al.  Transition-metal-catalyzed C-C bond formation through the fixation of carbon dioxide. , 2011, Chemical Society reviews.

[90]  Jingping Qu,et al.  N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide , 2011 .

[91]  B. Gabriele,et al.  Effective Guanidine-Catalyzed Synthesis of Carbonate and Carbamate Derivatives from Propargyl Alcohols in Supercritical Carbon Dioxide , 2011 .

[92]  C. Fu,et al.  A novel synthesis of oxazolidine-2,4-diones via an efficient fixation of CO2 with 3-aryl-2-alkynamides. , 2011, Organic & biomolecular chemistry.

[93]  G. Frenking,et al.  Carbodicarbenes and related divalent carbon(0) compounds. , 2010, Chemistry.

[94]  S. Minakata,et al.  Atmospheric CO2Fixation by Unsaturated Alcohols UsingtBuOI under Neutral Conditions , 2010 .

[95]  S. Minakata,et al.  Atmospheric CO2 fixation by unsaturated alcohols using tBuOI under neutral conditions. , 2010, Angewandte Chemie.

[96]  A. Fürstner,et al.  Tetrakis(Dimethylamino)Allene , 2009 .

[97]  K. M. Wiggins,et al.  A systematic investigation of factors influencing the decarboxylation of imidazolium carboxylates. , 2009, The Journal of organic chemistry.

[98]  Huanwang Jing,et al.  Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides , 2009 .

[99]  Masafumi Yamamoto,et al.  N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. , 2009, Angewandte Chemie.

[100]  T. Sakakura,et al.  The synthesis of organic carbonates from carbon dioxide. , 2009, Chemical communications.

[101]  B. Han,et al.  Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin , 2008 .

[102]  Jingping Qu,et al.  CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. , 2008, The Journal of organic chemistry.

[103]  Liang‐Nian He,et al.  Quaternary ammonium bromide functionalized polyethylene glycol: a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. , 2008, The Journal of organic chemistry.

[104]  G. Bertrand,et al.  Synthesis of an extremely bent acyclic allene (a "carbodicarbene"): a strong donor ligand. , 2008, Angewandte Chemie.

[105]  A. Fürstner,et al.  Coordination chemistry of ene-1,1-diamines and a prototype "carbodicarbene". , 2008, Angewandte Chemie.

[106]  G. Frenking,et al.  C(NHC)2: zweibindige Kohlenstoff(0)‐Verbindungen mit N‐heterocyclischen Carbenliganden – theoretische Belege für eine Molekülklasse mit vielversprechenden Eigenschaften , 2007 .

[107]  G. Frenking,et al.  C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands-theoretical evidence for a class of molecules with promising chemical properties. , 2007, Angewandte Chemie.

[108]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[109]  T. Mukhtar,et al.  Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. , 2005, Chemical reviews.

[110]  A. Arif,et al.  Reversible carboxylation of N-heterocyclic carbenes. , 2004, Chemical communications.

[111]  T. Endo,et al.  N-Tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure , 2004 .

[112]  Michael R. Barbachyn,et al.  Struktur‐Wirkungs‐Beziehungen von Oxazolidinonen: Grundlage der Entwicklung von Linezolid , 2003 .

[113]  M. R. Barbachyn,et al.  Oxazolidinone structure-activity relationships leading to linezolid. , 2003, Angewandte Chemie.

[114]  B. Han,et al.  List of poster , 1989 .

[115]  R. Gompper,et al.  Allenetetramine and Dialkoxydiaminoallene , 1973 .

[116]  H. Viehe,et al.  Allentetramine und Dialkoxy‐diamino‐allene , 1973 .