A composite algorithm for multiprocessor scheduling

A composite algorithm is developed for the classical problem of scheduling independent jobs on identical parallel machines with the objective of minimizing the makespan. The algorithm at first obtains a family of initial partial solutions and combines these partial solutions until a feasible solution is generated. Then local search procedures are used for improving the solution. The effectiveness of this approach is evaluated through extensive computational comparisons with recent improvement heuristics for different classes of benchmark instances.

[1]  Yiannis Gabriel,et al.  Logistics of Production and Inventory , 1993, Handbooks in Operations Research and Management Science.

[2]  Graham K. Rand,et al.  Logistics of Production and Inventory , 1995 .

[3]  Mauro Dell'Amico,et al.  Optimal Scheduling of Tasks on Identical Parallel Processors , 1995, INFORMS J. Comput..

[4]  Fred W. Glover,et al.  A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem , 2004, J. Heuristics.

[5]  Fred W. Glover,et al.  Applying tabu search with influential diversification to multiprocessor scheduling , 1994, Comput. Oper. Res..

[6]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[7]  Maria Grazia Scutellà,et al.  A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems , 2004, J. Comb. Optim..

[8]  Michel Gendreau,et al.  A composite heuristic for the identical parallel machine scheduling problem with minimum makespan objective , 1994, Comput. Oper. Res..

[9]  Ellis Horowitz,et al.  A linear time approximation algorithm for multiprocessor scheduling , 1979 .

[10]  Edward G. Coffman,et al.  An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..

[11]  J. Blazewicz,et al.  Selected Topics in Scheduling Theory , 1987 .

[12]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[13]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[14]  Arne Thesen,et al.  Design and Evaluation of Tabu Search Algorithms for Multiprocessor Scheduling , 1998, J. Heuristics.

[15]  Ian P. Gent Heuristic Solution of Open Bin Packing Problems , 1998, J. Heuristics.

[16]  Ethel Mokotoff,et al.  Production , Manufacturing and Logistics An exact algorithm for the identical parallel machine scheduling problem , 2003 .

[17]  Mauro Dell'Amico,et al.  Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem , 2008, INFORMS J. Comput..

[18]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[19]  Celia A. Glass,et al.  11. Machine scheduling , 2003 .

[20]  T.C.E. Cheng,et al.  A state-of-the-art review of parallel-machine scheduling research , 1990 .

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[23]  Giuseppe Paletta,et al.  A New Approximation Algorithm for the Nonpreemptive Scheduling of Independent Jobs on Identical Parallel Processors , 2007, SIAM J. Discret. Math..

[24]  S.M.T. Fatemi Ghomi,et al.  A pairwise interchange algorithm for parallel machine scheduling , 1998 .

[25]  Celso C. Ribeiro,et al.  A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling , 2004, WEA.

[26]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[27]  Jan Karel Lenstra,et al.  Sequencing and scheduling : an annotated bibliography , 1997 .

[28]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[29]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[30]  Michael A. Langston,et al.  Improved 0/1-interchange scheduling , 1982, BIT.