Turing pattern formation in the Brusselator system with nonlinear diffusion.

In this work we investigate the effect of density-dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in one-dimensional and two-dimensional spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover, we consider traveling patterning waves: When the domain size is large, the pattern forms sequentially and traveling wave fronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and, through a matching procedure, we construct the outer amplitude equation and the inner core solution.

[1]  Gonzalo Galiano,et al.  On a cross-diffusion population model deduced from mutation and splitting of a single species , 2012, Comput. Math. Appl..

[2]  Catharine J. Roussel,et al.  Reaction-diffusion models of development with state-dependent chemical diffusion coefficients. , 2004, Progress in biophysics and molecular biology.

[3]  Ansgar Jüngel,et al.  Analysis of a Parabolic Cross-Diffusion Semiconductor Model with Electron-Hole Scattering , 2007 .

[4]  Marco Sammartino,et al.  Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion , 2012, Math. Comput. Simul..

[5]  Interaction between silica gel matrices and the Belousov—Zhabotinsky reaction , 1993 .

[6]  M. M. Turner,et al.  Instabilities and pattern formation in low temperature plasmas , 2005, Appl. Math. Lett..

[7]  Diego del-Castillo-Negrete,et al.  Front propagation and segregation in a reaction–diffusion model with cross-diffusion , 2002 .

[8]  B. M. Fulk MATH , 1992 .

[9]  Jonathan A. Sherratt,et al.  Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  W. Horsthemke,et al.  Turing bifurcation in a reaction–diffusion system with density-dependent dispersal , 2010 .

[11]  M. C. Lombardo,et al.  A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .

[12]  L. Kramer,et al.  Amplitude equations for description of chemical reaction–diffusion systems , 2000 .

[13]  Lorenzo Pareschi,et al.  Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences , 2010 .

[14]  Autocatalytic reaction fronts inside a porous medium of glass spheres. , 2013, Physical review letters.

[15]  Alison Ord,et al.  Computer simulations of coupled problems in geological and geochemical systems , 2002 .

[16]  Werner Horsthemke,et al.  Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Lázár,et al.  Refraction of chemical waves propagating in modified membranes , 1996 .

[18]  Vitaly Volpert,et al.  Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point , 2011 .

[19]  V. M. Kenkre,et al.  Hurst exponents for interacting random walkers obeying nonlinear Fokker–Planck equations , 2009 .

[20]  Deborah Lacitignola,et al.  Coupling of Morphology and Chemistry Leads to Morphogenesis in Electrochemical Metal Growth: A Review of the Reaction-Diffusion Approach , 2012 .

[21]  Anna E. Tikhomirova,et al.  Nonlinear dynamics of endothelial cells , 2007, Appl. Math. Lett..

[22]  Canrong Tian,et al.  Instability induced by cross-diffusion in reaction–diffusion systems , 2010 .

[23]  M. Hildebrand Self-organized nanostructures in surface chemical reactions: Mechanisms and mesoscopic modeling. , 2002, Chaos.

[24]  Y. Pomeau,et al.  Axisymmetric cellular structures revisited , 1985 .

[25]  Bernard J. Matkowsky,et al.  Turing Pattern Formation in the Brusselator Model with Superdiffusion , 2008, SIAM J. Appl. Math..

[26]  W. Saarloos,et al.  Probing a subcritical instability with an amplitude expansion: An exploration of how far one can get , 2009 .

[27]  A. Jüngel Diffusive and nondiffusive population models , 2010 .

[28]  Alexander S. Mikhailov,et al.  Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems , 2006 .

[29]  Arnd Scheel,et al.  Radially Symmetric Patterns of Reaction-Diffusion Systems , 2003 .

[30]  Yeliang Wang,et al.  Self-assembled stripes on the anodic aluminum oxide by atomic force microscope observation , 2003 .

[31]  C. Beta,et al.  Laser-Induced Target Patterns in the Oscillatory CO Oxidation on Pt(110)† , 2004 .

[32]  H. Nagashima Target Patterns and Pacemakers in a Reaction-Diffusion System , 1991 .

[33]  G. Mulone,et al.  The effect of density-dependent dispersal on the stability of populations , 2011 .

[34]  Gerhard Ertl,et al.  Oscillatory Kinetics in Heterogeneous Catalysis , 1995 .

[35]  I. Epstein,et al.  Amplitude equations for reaction-diffusion systems with cross diffusion. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  B. Hobbs,et al.  Finite element modelling of dissipative structures for nonequilibrium chemical reactions in fluid-saturated porous media , 2000 .

[37]  Wenyong Hu,et al.  Regulation of Turing patterns in a spatially extended chlorine-iodine-malonic-acid system with a local concentration-dependent diffusivity. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Philip K. Maini,et al.  Biological Pattern Formation on Two-Dimensional Spatial Domains: A Nonlinear Bifurcation Analysis , 1997, SIAM J. Appl. Math..

[39]  M. C. Lombardo,et al.  Pattern formation driven by cross-diffusion in a 2D domain , 2012, 1211.4412.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  H. Malchow Dissipative pattern formation in ternary non-linear reaction-electrodiffusion systems with concentration-dependent diffusivities. , 1988, Journal of theoretical biology.

[42]  Bernard J. Matkowsky,et al.  Interaction of Turing and Hopf modes in the superdiffusive Brusselator model , 2009, Appl. Math. Lett..

[43]  Xiaoliang Wan,et al.  Comput. Methods Appl. Mech. Engrg. , 2010 .

[44]  K. Kassner,et al.  Turing space in reaction-diffusion systems with density-dependent cross diffusion , 2013 .

[45]  Ricardo Ruiz-Baier,et al.  Nonlinear Analysis: Real World Applications Mathematical Analysis and Numerical Simulation of Pattern Formation under Cross-diffusion , 2022 .

[46]  Andrew G. Glen,et al.  APPL , 2001 .

[47]  I. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics , 1998 .