Two-Dimensional Regular Shock Reflection for the Pressure Gradient System of Conservation Laws

We establish the existence of a global solution to a regular reflection of a shock hitting a ramp for the pressure gradient system of equations. The set-up of the reflection is the same as that of Mach’s experiment for the compressible Euler system, i. e., a straight shock hitting a ramp. We assume that the angle of the ramp is close to 90 degrees. The solution has a reflected bow shock wave, called the diffraction of the planar shock at the compressive corner, which is mathematically regarded as a free boundary in the self-similar variable plane. The pressure gradient system of three equations is a subsystem, and an approximation, of the full Euler system, and we offer a couple of derivations.

[1]  A. l. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.

[2]  G. M. Lieberman The Perron process applied to oblique derivative problems , 1985 .

[3]  Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations , 2002 .

[4]  Yuxi Zheng,et al.  Systems of Conservation Laws: Two-Dimensional Riemann Problems , 2001 .

[5]  Zheng Yuxi Existence of solutions to the transonic pressure gradient equations of the compressible euler equations in elliptic Regions , 1997 .

[6]  Mikhail Feldman,et al.  Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations , 2004 .

[7]  Tong Zhang,et al.  The two-dimensional Riemann problem in gas dynamics , 1998 .

[8]  M. Mahoney,et al.  History of Mathematics , 1924, Nature.

[9]  YuxiZheng A Global Solution to a Two-dimensional Riemann Problem Involving Shocks as Free Boundaries , 2003 .

[10]  Shuli,et al.  The two-dimensional Riemann problem in gas dynamics , 1998 .

[11]  Barbara Lee Keyfitz,et al.  A proof of existence of perturbed steady transonic shocks via a free boundary problem , 2000 .

[12]  Shuxing Chen Existence of Stationary Supersonic Flows Past a Pointed Body , 2001 .

[13]  A. Azzam Smoothness properties of solutions of mixed boundary value problems for elliptic equations in sectionally smooth n-dimensional domains , 1981 .

[14]  C. Morawetz Potential theory for regular and mach reflection of a shock at a wedge , 1994 .

[15]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[16]  D. C. Pack The reflexion and diffraction of shock waves , 1964, Journal of Fluid Mechanics.

[17]  John K. Hunter,et al.  Weak shock diffraction , 1984 .

[18]  Gary M. Lieberman,et al.  Optimal Hölder regularity for mixed boundary value problems , 1989 .

[19]  Zihuan Dai,et al.  Existence of a Global Smooth Solution¶for a Degenerate Goursat Problem¶of Gas Dynamics , 2000 .

[20]  R. Borrelli The Singular, Second Order Oblique Derivative Problem , 1966 .

[21]  Z. Xin,et al.  Global Shock Waves¶for the Supersonic Flow Past a Perturbed Cone , 2002 .

[22]  Irene M. Gamba,et al.  CONSTRAINTS ON POSSIBLE SINGULARITIES FOR THE UNSTEADY TRANSONIC SMALL DISTURBANCE (UTSD) EQUATIONS , 1999 .

[23]  Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains , 2004 .

[24]  S. Čanić,et al.  Free Boundary Problems for the Unsteady Transonic Small Disturbance Equation: Transonic Regular Reflection , 2000 .

[25]  A. Maugeri,et al.  A Singular Boundary Value Problem for Uniformly Elliptic Operators , 2001 .

[26]  Mikhail Feldman,et al.  MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR NONLINEAR EQUATIONS OF MIXED TYPE , 2003 .

[27]  Yongqian Zhang Steady supersonic flow past an almost straight wedge with large vertex angle , 2003 .

[28]  Gabi Ben-Dor,et al.  Steady, pseudo-steady and unsteady shock wave reflections , 1988 .

[29]  P. Popivanov,et al.  The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations , 1997 .

[30]  J. V. Egorov,et al.  THE OBLIQUE DERIVATIVE PROBLEM , 1969 .

[31]  V. Maz'ya,et al.  Jacques Hadamard: A Universal Mathematician , 1998 .

[32]  The ellipticity principle for steady and selfsimilar polytropic potential flow , 2004 .

[33]  James Glimm,et al.  Multidimensional hyperbolic problems and computations , 1991 .

[34]  E. Tabak,et al.  Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection , 1994 .

[35]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[36]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[38]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[39]  Eun Heui Kim,et al.  A free boundary problem for a quasi‐linear degenerate elliptic equation: Regular reflection of weak shocks , 2002 .

[40]  M. A. Nettleton,et al.  Unsteady interactions of shock waves , 1984 .

[41]  D. Serre Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d'un choc plan par un diédre compressif , 1995 .

[42]  P. Popivanov,et al.  The tangential oblique derivative problem for nonlinear elliptic equations , 1989 .

[43]  Hans G. Hornung,et al.  Regular and Mach Reflection of Shock Waves , 1986 .

[44]  E. Tabak,et al.  Caustics of weak shock waves , 1998 .

[45]  REGULAR AND MACH REFLECTION OF SHOCK WAVES 1 , 2005 .

[46]  Zhouping Xin,et al.  Transonic shock in a nozzle I: 2D case , 2005 .

[47]  B. Winzell A boundary value problem with an oblique derivative , 1981 .

[48]  Gary M. Lieberman,et al.  Mixed boundary value problems for elliptic and parabolic differential equations of second order , 1986 .

[49]  John K. Hunter,et al.  Self-Similar Solutions for Weak Shock Reflection , 2002, SIAM J. Appl. Math..

[50]  John K. Hunter,et al.  Mach reflection for the two-dimensional Burgers equation , 1992 .

[51]  Gary M. Lieberman,et al.  Oblique derivative problems in Lipschitz domains: II. Discontinuous boundary data. , 1988 .

[52]  I. I. Glass,et al.  Nonstationary flows and shock waves , 1994 .

[53]  David Gilbarg,et al.  Intermediate Schauder estimates , 1980 .

[54]  Joseph B. Keller,et al.  Diffraction and reflection of pulses by wedges and corners , 1951 .

[55]  L. F. Henderson Regions and Boundaries for Diffracting Shock Wave Systems , 1987 .

[56]  Suncica Canic,et al.  Free Boundary Problems for Nonlinear Wave Systems: Mach Stems for Interacting Shocks , 2006, SIAM J. Math. Anal..

[57]  The Pressure-Gradient System on Non-smooth Domains , 2003 .