Two-Dimensional Regular Shock Reflection for the Pressure Gradient System of Conservation Laws
暂无分享,去创建一个
[1] A. l.. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.
[2] G. M. Lieberman. The Perron process applied to oblique derivative problems , 1985 .
[3] Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations , 2002 .
[4] Yuxi Zheng,et al. Systems of Conservation Laws: Two-Dimensional Riemann Problems , 2001 .
[5] Zheng Yuxi. Existence of solutions to the transonic pressure gradient equations of the compressible euler equations in elliptic Regions , 1997 .
[6] Mikhail Feldman,et al. Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations , 2004 .
[7] Tong Zhang,et al. The two-dimensional Riemann problem in gas dynamics , 1998 .
[8] M. Mahoney,et al. History of Mathematics , 1924, Nature.
[9] YuxiZheng. A Global Solution to a Two-dimensional Riemann Problem Involving Shocks as Free Boundaries , 2003 .
[10] Shuli,et al. The two-dimensional Riemann problem in gas dynamics , 1998 .
[11] Barbara Lee Keyfitz,et al. A proof of existence of perturbed steady transonic shocks via a free boundary problem , 2000 .
[12] Shuxing Chen. Existence of Stationary Supersonic Flows Past a Pointed Body , 2001 .
[13] A. Azzam. Smoothness properties of solutions of mixed boundary value problems for elliptic equations in sectionally smooth n-dimensional domains , 1981 .
[14] C. Morawetz. Potential theory for regular and mach reflection of a shock at a wedge , 1994 .
[15] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[16] D. C. Pack. The reflexion and diffraction of shock waves , 1964, Journal of Fluid Mechanics.
[17] John K. Hunter,et al. Weak shock diffraction , 1984 .
[18] Gary M. Lieberman,et al. Optimal Hölder regularity for mixed boundary value problems , 1989 .
[19] Zihuan Dai,et al. Existence of a Global Smooth Solution¶for a Degenerate Goursat Problem¶of Gas Dynamics , 2000 .
[20] R. Borrelli. The Singular, Second Order Oblique Derivative Problem , 1966 .
[21] Z. Xin,et al. Global Shock Waves¶for the Supersonic Flow Past a Perturbed Cone , 2002 .
[22] Irene M. Gamba,et al. CONSTRAINTS ON POSSIBLE SINGULARITIES FOR THE UNSTEADY TRANSONIC SMALL DISTURBANCE (UTSD) EQUATIONS , 1999 .
[23] Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains , 2004 .
[24] S. Čanić,et al. Free Boundary Problems for the Unsteady Transonic Small Disturbance Equation: Transonic Regular Reflection , 2000 .
[25] A. Maugeri,et al. A Singular Boundary Value Problem for Uniformly Elliptic Operators , 2001 .
[26] Mikhail Feldman,et al. MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE BOUNDARY PROBLEMS FOR NONLINEAR EQUATIONS OF MIXED TYPE , 2003 .
[27] Yongqian Zhang. Steady supersonic flow past an almost straight wedge with large vertex angle , 2003 .
[28] Gabi Ben-Dor,et al. Steady, pseudo-steady and unsteady shock wave reflections , 1988 .
[29] P. Popivanov,et al. The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations , 1997 .
[30] J. V. Egorov,et al. THE OBLIQUE DERIVATIVE PROBLEM , 1969 .
[31] V. Maz'ya,et al. Jacques Hadamard: A Universal Mathematician , 1998 .
[32] The ellipticity principle for steady and selfsimilar polytropic potential flow , 2004 .
[33] James Glimm,et al. Multidimensional hyperbolic problems and computations , 1991 .
[34] E. Tabak,et al. Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection , 1994 .
[35] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[36] L. Hörmander,et al. Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .
[37] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[38] Allaberen Ashyralyev,et al. Partial Differential Equations of Elliptic Type , 2004 .
[39] Eun Heui Kim,et al. A free boundary problem for a quasi‐linear degenerate elliptic equation: Regular reflection of weak shocks , 2002 .
[40] M. A. Nettleton,et al. Unsteady interactions of shock waves , 1984 .
[41] D. Serre. Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d'un choc plan par un diédre compressif , 1995 .
[42] P. Popivanov,et al. The tangential oblique derivative problem for nonlinear elliptic equations , 1989 .
[43] Hans G. Hornung,et al. Regular and Mach Reflection of Shock Waves , 1986 .
[44] E. Tabak,et al. Caustics of weak shock waves , 1998 .
[45] REGULAR AND MACH REFLECTION OF SHOCK WAVES 1 , 2005 .
[46] Zhouping Xin,et al. Transonic shock in a nozzle I: 2D case , 2005 .
[47] B. Winzell. A boundary value problem with an oblique derivative , 1981 .
[48] Gary M. Lieberman,et al. Mixed boundary value problems for elliptic and parabolic differential equations of second order , 1986 .
[49] John K. Hunter,et al. Self-Similar Solutions for Weak Shock Reflection , 2002, SIAM J. Appl. Math..
[50] John K. Hunter,et al. Mach reflection for the two-dimensional Burgers equation , 1992 .
[51] Gary M. Lieberman,et al. Oblique derivative problems in Lipschitz domains: II. Discontinuous boundary data. , 1988 .
[52] I. I. Glass,et al. Nonstationary flows and shock waves , 1994 .
[53] David Gilbarg,et al. Intermediate Schauder estimates , 1980 .
[54] Joseph B. Keller,et al. Diffraction and reflection of pulses by wedges and corners , 1951 .
[55] L. F. Henderson. Regions and Boundaries for Diffracting Shock Wave Systems , 1987 .
[56] Suncica Canic,et al. Free Boundary Problems for Nonlinear Wave Systems: Mach Stems for Interacting Shocks , 2006, SIAM J. Math. Anal..
[57] The Pressure-Gradient System on Non-smooth Domains , 2003 .