Astrocytic complexity distinguishes the human brain

[1]  Andriezen Wl,et al.  The Neuroglia Elements in the Human Brain , 1893 .

[2]  Reinhard L. Friede,et al.  DER QUANTITATIVE ANTEIL DER GLIA AN DER CORTEXENTWICKLUNG , 1954 .

[3]  N. H. Bass,et al.  Quantitative cytoarchitectonic distribution of neurons, glia, and DNA in rat cerebral cortex , 1971, The Journal of comparative neurology.

[4]  Steven A. Johnson,et al.  GFAP mRNA increases with age in rat and human brain , 1993, Neurobiology of Aging.

[5]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[6]  J. Walsh,et al.  Neurophysiological, pharmacological and morphological properties of human caudate neurons recorded in vitro , 1994, Neuroscience.

[7]  M. Berry,et al.  Confocal imaging of glial cells in the intact rat optic nerve , 1994, Glia.

[8]  M. Nedergaard,et al.  Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. , 1994, Science.

[9]  A. Levey,et al.  Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis , 1995, Annals of neurology.

[10]  Massimo Avoli,et al.  Functional and pharmacological properties of human neocortical neurons maintained in vitro , 1996, Progress in Neurobiology.

[11]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[12]  Javier DeFelipe,et al.  Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities , 1997, Journal of Chemical Neuroanatomy.

[13]  J. Colombo,et al.  Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex , 1997, Journal of neuroscience research.

[14]  Javier DeFelipe,et al.  Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex , 1997, Journal of Chemical Neuroanatomy.

[15]  T. I. Chao,et al.  Autocellular coupling by gap junctions in cultured astrocytes: A new view on cellular autoregulation during process formation , 1998, Glia.

[16]  Harald Sontheimer,et al.  Properties of human glial cells associated with epileptic seizure foci , 1998, Epilepsy Research.

[17]  J. Lund,et al.  Anatomical comparison of the macaque and marsupial visual cortex: Common features that may reflect retention of essential cortical elements , 1998, The Journal of comparative neurology.

[18]  A. Álvarez-Buylla,et al.  Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[21]  R. Swanson,et al.  Astrocyte glutamate transport: Review of properties, regulation, and physiological functions , 2000, Glia.

[22]  F. Edwards,et al.  Synaptic P2X receptors , 2001, Current Opinion in Neurobiology.

[23]  B. Barres,et al.  Control of synapse number by glia. , 2001, Science.

[24]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[25]  Carissa G. Fonseca,et al.  Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy , 2002, Brain Research.

[26]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[27]  E. Avignone,et al.  Gap junctions and connexin expression in the normal and pathological central nervous system , 2002, Biology of the cell.

[28]  J. Colombo,et al.  Disruption of astroglial interlaminar processes in Alzheimer’s disease , 2002, Brain Research Bulletin.

[29]  Fred H. Gage,et al.  Astroglia induce neurogenesis from adult neural stem cells , 2002, Nature.

[30]  T. Takano,et al.  Beyond the role of glutamate as a neurotransmitter , 2002, Nature Reviews Neuroscience.

[31]  Mark Ellisman,et al.  Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains , 2002, The Journal of Neuroscience.

[32]  T. Kosaka,et al.  Structural and quantitative analysis of astrocytes in the mouse hippocampus , 2002, Neuroscience.

[33]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[34]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[35]  B. Ransom,et al.  Functional Hemichannels in Astrocytes: A Novel Mechanism of Glutamate Release , 2003, The Journal of Neuroscience.

[36]  M. D'Andrea,et al.  Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains , 2003, Brain Research.

[37]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[38]  J. Kaas,et al.  Areal specialization of pyramidal cell structure in the visual cortex of the tree shrew: a new twist revealed in the evolution of cortical circuitry , 2005, Experimental Brain Research.

[39]  J. Wegiel,et al.  Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease , 2004, Neurobiology of Aging.

[40]  V. Gundersen,et al.  Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate , 2004, Nature Neuroscience.

[41]  G. Leuba,et al.  Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man , 2004, Experimental Brain Research.

[42]  M. Simard,et al.  The neurobiology of glia in the context of water and ion homeostasis , 2004, Neuroscience.

[43]  Hernán D. Reisin,et al.  Interlaminar astroglia of the cerebral cortex: a marker of the primate brain , 2004, Brain Research.

[44]  B. MacVicar,et al.  Calcium transients in astrocyte endfeet cause cerebrovascular constrictions , 2004, Nature.

[45]  Javier DeFelipe,et al.  Double bouquet cell in the human cerebral cortex and a comparison with other mammals , 2005, The Journal of comparative neurology.

[46]  T. Takano,et al.  An astrocytic basis of epilepsy , 2005, Nature Medicine.

[47]  Hernán D. Reisin,et al.  Development of interlaminar astroglial processes in the cerebral cortex of control and Down's syndrome human cases , 2005, Experimental Neurology.

[48]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[49]  T. Takano,et al.  Receptor-mediated glutamate release from volume sensitive channels in astrocytes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  N. Hamilton,et al.  Synantocytes: the fifth element , 2005, Journal of anatomy.

[51]  D. Korzhevskii,et al.  Glial Fibrillary Acidic Protein in Astrocytes in the Human Neocortex , 2005, Neuroscience and Behavioral Physiology.

[52]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[53]  Cathryn L. Kubera,et al.  Astrocytic Purinergic Signaling Coordinates Synaptic Networks , 2005, Science.

[54]  P. Svenningsson,et al.  Adenosine and brain function. , 2005, International review of neurobiology.

[55]  T. Fellin,et al.  Do astrocytes contribute to excitation underlying seizures? , 2005, Trends in molecular medicine.

[56]  Nader Sanai,et al.  Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells , 2006, The Journal of comparative neurology.

[57]  Christian Steinhäuser,et al.  Astrocyte dysfunction in neurological disorders: a molecular perspective , 2006, Nature Reviews Neuroscience.

[58]  N. Ratner,et al.  Model systems for neurofibroma and malignant peripheral nerve sheath tumor , 2006 .

[59]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[60]  S. Oliet,et al.  Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory , 2006, Cell.

[61]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[62]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.