Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research

The increasing demands of energy storage require the significant improvement of current Li‐ion battery electrode materials and the development of advanced electrode materials. Thus, it is necessary to gain an in‐depth understanding of the reaction processes, degradation mechanism, and thermal decomposition mechanisms under realistic operation conditions. This understanding can be obtained by in situ/operando characterization techniques, which provide information on the structure evolution, redox mechanism, solid‐electrolyte interphase (SEI) formation, side reactions, and Li‐ion transport properties under operating conditions. Here, the recent developments in the in situ/operando techniques employed for the investigation of the structural stability, dynamic properties, chemical environment changes, and morphological evolution are described and summarized. The experimental approaches reviewed here include X‐ray, electron, neutron, optical, and scanning probes. The experimental methods and operating principles, especially the in situ cell designs, are described in detail. Representative studies of the in situ/operando techniques are summarized, and finally the major current challenges and future opportunities are discussed. Several important battery challenges are likely to benefit from these in situ/operando techniques, including the inhomogeneous reactions of high‐energy‐density cathodes, the development of safe and reversible Li metal plating, and the development of stable SEI.

[1]  Yan‐Bing He,et al.  Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes , 2019, Nature Communications.

[2]  V. K. Peterson,et al.  Structural Evolution and High-Voltage Structural Stability of Li(NixMnyCoz)O2 Electrodes , 2019, Chemistry of Materials.

[3]  Yi Cui,et al.  In Situ Focused Ion Beam Scanning Electron Microscope Study of Microstructural Evolution of Single Tin Particle Anode for Li-Ion Batteries. , 2019, ACS applied materials & interfaces.

[4]  J. Irvine,et al.  In-situ Studies of High Temperature Thermal Batteries: A Perspective , 2018, Front. Energy Res..

[5]  Tongchao Liu,et al.  In situ quantification of interphasial chemistry in Li-ion battery , 2018, Nature Nanotechnology.

[6]  F. Pan,et al.  Spectroscopic Signature of Oxidized Oxygen States in Peroxides. , 2018, The journal of physical chemistry letters.

[7]  Yong‐Sheng Hu,et al.  Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery , 2018, Nature Communications.

[8]  Erik J. Berg,et al.  In situ and Operando Raman Spectroscopy of Layered Transition Metal Oxides for Li-ion Battery Cathodes , 2018, Front. Energy Res..

[9]  Min Gyu Kim,et al.  Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement , 2018, Nature Communications.

[10]  P. Novák,et al.  A Cylindrical Cell for Operando Neutron Diffraction of Li-Ion Battery Electrode Materials , 2018, Front. Energy Res..

[11]  K. Zaghib,et al.  Application of Operando X-ray Diffraction and Raman Spectroscopies in Elucidating the Behavior of Cathode in Lithium-Ion Batteries , 2018, Front. Energy Res..

[12]  Xuanxuan Bi,et al.  Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release , 2018, Nature Energy.

[13]  Long-qing Chen,et al.  Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy , 2018, Nature Communications.

[14]  Jonathan P. Wright,et al.  Revealing Operando Transformation Dynamics in Individual Li-ion Electrode Crystallites Using X-Ray Microbeam Diffraction , 2018, Front. Energy Res..

[15]  M. Wagemaker,et al.  Operando Neutron Depth Profiling to Determine the Spatial Distribution of Li in Li-ion Batteries , 2018, Front. Energy Res..

[16]  Xiqian Yu,et al.  In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research , 2018, NPG Asia Materials.

[17]  Wanli Yang,et al.  Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering , 2018, Journal of Power Sources.

[18]  M. Wagemaker,et al.  Operando monitoring the lithium spatial distribution of lithium metal anodes , 2018, Nature Communications.

[19]  Xiqian Yu,et al.  Advanced Characterization Techniques for Sodium‐Ion Battery Studies , 2018 .

[20]  D. A. D. Corte,et al.  Lithiation Mechanism of Methylated Amorphous Silicon Unveiled by Operando ATR‐FTIR Spectroscopy , 2018 .

[21]  P. He,et al.  Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials , 2018, Advanced materials.

[22]  Rohit Bhagat,et al.  Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors , 2018 .

[23]  Jun Lu,et al.  Elucidating anionic oxygen activity in lithium-rich layered oxides , 2018, Nature Communications.

[24]  Chenglong Zhao,et al.  Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy , 2018 .

[25]  A. Bard,et al.  Scanning electrochemical microscopy at the nanometer level. , 2018, Chemical communications.

[26]  Claire Villevieille,et al.  Do imaging techniques add real value to the development of better post-Li-ion batteries? , 2018 .

[27]  Ya‐Xia Yin,et al.  A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. , 2018, Angewandte Chemie.

[28]  A. Kolmakov,et al.  From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy. , 2018, Nano letters.

[29]  Quan-hong Yang,et al.  Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage , 2018, Nature Communications.

[30]  Xiqian Yu,et al.  Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. , 2018, Accounts of chemical research.

[31]  L. Stievano,et al.  Solvation and Dynamics of Lithium Ions in Carbonate-Based Electrolytes during Cycling Followed by Operando Infrared Spectroscopy: The Example of NiSb2, a Typical Negative Conversion-Type Electrode Material for Lithium Batteries , 2017 .

[32]  J. Janek,et al.  Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries , 2017 .

[33]  Ji‐Guang Zhang,et al.  New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. , 2017, Nano letters.

[34]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[35]  J. Janek,et al.  Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation , 2017 .

[36]  Baohua Li,et al.  Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO2-B and Anatase Dual-Phase Nanowires. , 2017, ACS applied materials & interfaces.

[37]  Tongchao Liu,et al.  Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations , 2017 .

[38]  P. Bruce,et al.  Lithiation Thermodynamics and Kinetics of the TiO2 (B) Nanoparticles. , 2017, Journal of the American Chemical Society.

[39]  Chunjoong Kim,et al.  Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques , 2017 .

[40]  M. Horisberger,et al.  Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry , 2017 .

[41]  P. Pietsch,et al.  X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide , 2017 .

[42]  E. Stach,et al.  Strain Coupling of Conversion-type Fe3 O4 Thin Films for Lithium Ion Batteries. , 2017, Angewandte Chemie.

[43]  L. Wan,et al.  Direct Visualization of Nucleation and Growth Processes of Solid Electrolyte Interphase Film Using in Situ Atomic Force Microscopy. , 2017, ACS applied materials & interfaces.

[44]  J. Cabana,et al.  Direct characterization of the Li intercalation mechanism into α-V2O5 nanowires using in-situ transmission electron microscopy , 2017 .

[45]  W. Lu,et al.  In Situ Visualized Cathode Electrolyte Interphase on LiCoO2 in High Voltage Cycling. , 2017, ACS applied materials & interfaces.

[46]  S. Mao,et al.  In Situ Observation of Single‐Phase Lithium Intercalation in Sub‐25‐nm Nanoparticles , 2017, Advanced materials.

[47]  Xiqian Yu,et al.  In situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates , 2017 .

[48]  Ming Liu,et al.  A review of gassing behavior in Li4Ti5O12-based lithium ion batteries , 2017 .

[49]  Yan Xu,et al.  Liquid‐Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution , 2017, Advanced materials.

[50]  J. Banhart,et al.  Complementary X-ray and neutron radiography study of the initial lithiation process in lithium-ion batteries containing silicon electrodes , 2017 .

[51]  H. Gasteiger,et al.  Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction , 2017 .

[52]  Zahid Hussain,et al.  High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. , 2017, The Review of scientific instruments.

[53]  Yong‐Sheng Hu,et al.  In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery. , 2017, Journal of the American Chemical Society.

[54]  Y. Orikasa,et al.  Hidden Two-Step Phase Transition and Competing Reaction Pathways in LiFePO4 , 2017 .

[55]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[56]  J. Groot,et al.  Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction , 2017 .

[57]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[58]  V. K. Peterson,et al.  In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery , 2017 .

[59]  M. Kitta,et al.  Real-Time Observation of Li Deposition on a Li Electrode with Operand Atomic Force Microscopy and Surface Mechanical Imaging. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[60]  Y. Bando,et al.  Improved Li+ Storage through Homogeneous N‐Doping within Highly Branched Tubular Graphitic Foam , 2017, Advanced materials.

[61]  Guoying Chen,et al.  Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy , 2017, Nature Communications.

[62]  W. Schuhmann,et al.  Solid Electrolyte Interphase (SEI) at TiO2 Electrodes in Li-Ion Batteries: Defining Apparent and Effective SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. , 2017, ACS applied materials & interfaces.

[63]  G. Wittstock,et al.  Scanning Electrochemical Microscopy for the In Situ Characterization of Solid–Electrolyte Interphases: Highly Oriented Pyrolytic Graphite versus Graphite Composite , 2016 .

[64]  Jun Lu,et al.  The influence of large cations on the electrochemical properties of tunnel-structured metal oxides , 2016, Nature Communications.

[65]  Litao Sun,et al.  Investigation on material behavior in liquid by in situ TEM , 2016 .

[66]  G. Reinhart,et al.  In situ visualization of the electrolyte solvent filling process by neutron radiography , 2016 .

[67]  Xiqian Yu,et al.  High‐Rate Charging Induced Intermediate Phases and Structural Changes of Layer‐Structured Cathode for Lithium‐Ion Batteries , 2016 .

[68]  M. Ishikawa,et al.  In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes , 2016, Scientific Reports.

[69]  Srikanth Allu,et al.  Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods , 2016 .

[70]  N. Drewett,et al.  In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses. , 2016, The journal of physical chemistry letters.

[71]  J. Mauzeroll,et al.  Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. , 2016, Chemical reviews.

[72]  C. Grey,et al.  A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices , 2016 .

[73]  N. Yamada,et al.  Neutron reflectometry analysis of Li_4Ti_5O_12/organic electrolyte interfaces: characterization of surface structure changes and lithium intercalation properties , 2016 .

[74]  F. Marone,et al.  Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes , 2016, Nature Communications.

[75]  Yizhou Zhu,et al.  Kinetic Phase Evolution of Spinel Cobalt Oxide during Lithiation. , 2016, ACS nano.

[76]  L. Arnberg,et al.  In operando neutron diffraction study of a commercial graphite/(Ni, Mn, Co) oxide-based multi-component lithium ion battery , 2016 .

[77]  Chunzeng Li,et al.  In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes , 2016 .

[78]  Y. Orikasa,et al.  Dynamic Behavior at the Interface between Lithium Cobalt Oxide and an Organic Electrolyte Monitored by Neutron Reflectivity Measurements , 2016 .

[79]  Yuegang Zhang,et al.  Controlling Electrochemical Lithiation/Delithiation Reaction Paths for Long-cycle Life Nanochain-structured FeS2 Electrodes , 2016 .

[80]  Y. Ukyo,et al.  Degradation analysis of 18650-type lithium-ion cells by operando neutron diffraction , 2016 .

[81]  Jonathan P. Wright,et al.  Operando Nanobeam Diffraction to Follow the Decomposition of Individual Li2O2 Grains in a Nonaqueous Li-O2 Battery. , 2016, The journal of physical chemistry letters.

[82]  L. Liao,et al.  High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2. , 2016, Nano letters.

[83]  Q. Shen,et al.  Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles , 2016, Nature Communications.

[84]  Claudio V. Di Leo,et al.  In Situ Lithiation–Delithiation of Mechanically Robust Cu–Si Core–Shell Nanolattices in a Scanning Electron Microscope , 2016 .

[85]  Martin Z. Bazant,et al.  Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles , 2016, Science.

[86]  S. Risse,et al.  Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity. , 2016, ACS nano.

[87]  J. Janek,et al.  In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. , 2016, Nanoscale.

[88]  N. Sharma,et al.  The Origin of Capacity Fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study. , 2016, Journal of the American Chemical Society.

[89]  Hajime Arai,et al.  Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation , 2016, Scientific Reports.

[90]  V. Wood,et al.  Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries , 2016, Scientific Reports.

[91]  G. Du,et al.  Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy , 2016, Scientific Reports.

[92]  J. Cabana Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy , 2016 .

[93]  K. Jungjohann,et al.  Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy. , 2016, ACS nano.

[94]  Jun Lu,et al.  Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes , 2016, Nature Communications.

[95]  Wen Luo,et al.  In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices , 2016 .

[96]  Kang L. Wang,et al.  Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography. , 2016, Nano letters.

[97]  J. Baldwin,et al.  Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. , 2016, Physical chemistry chemical physics : PCCP.

[98]  Yuyan Shao,et al.  Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca. , 2016, Angewandte Chemie.

[99]  A. Ludwig,et al.  Understanding surface reactivity of Si electrodes in Li-ion batteries by in operando scanning electrochemical microscopy. , 2016, Chemical communications.

[100]  Yizhou Zhu,et al.  Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy , 2016, Nature Communications.

[101]  N. Dudney,et al.  In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. , 2016, Nano letters.

[102]  Yi Cui,et al.  Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes , 2016 .

[103]  M. Harada,et al.  Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry. , 2016, ACS applied materials & interfaces.

[104]  Yi Cui,et al.  In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy , 2016 .

[105]  Y. Meng,et al.  Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale. , 2016, ACS nano.

[106]  J. Rodríguez‐López,et al.  Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution. , 2016, ACS nano.

[107]  Y. Chiang,et al.  Engineering the Transformation Strain in LiMnyFe1-yPO4 Olivines for Ultrahigh Rate Battery Cathodes. , 2016, Nano letters.

[108]  E. Timofeeva,et al.  Potential-Resolved In Situ X-ray Absorption Spectroscopy Study of Sn and SnO2 Nanomaterial Anodes for Lithium-Ion Batteries , 2016 .

[109]  K. Chapman Emerging operando and x-ray pair distribution function methods for energy materials development , 2016 .

[110]  S. Passerini,et al.  In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - investigation of SEI growth. , 2016, Chemical communications.

[111]  Y. Ein‐Eli,et al.  In‐Situ Spectro–electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium–ion Battery , 2016 .

[112]  F. Marone,et al.  Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy , 2016, Scientific Reports.

[113]  B. Hwang,et al.  In Situ DRIFTS Analysis of Solid‐Electrolyte Interphase Formation on Li‐Rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition , 2016 .

[114]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[115]  S. Schmid,et al.  Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials , 2016 .

[116]  Yongfeng Hu,et al.  Dynamic study of sub-micro sized LiFePO 4 cathodes by in-situ tender X-ray absorption near edge structure , 2016 .

[117]  A. Co,et al.  Revealing Chemical Processes Involved in Electrochemical (De)Lithiation of Al with in Situ Neutron Depth Profiling and X-ray Diffraction. , 2016, Journal of the American Chemical Society.

[118]  Y. Koyama,et al.  Phase transition kinetics of LiNi0.5Mn1.5O4 analyzed by temperature-controlled operando X-ray absorption spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[119]  Lei Cao,et al.  Demonstrating the Feasibility of Al as Anode Current Collector in Li-Ion Batteries via In Situ Neutron Depth Profiling , 2016 .

[120]  C. Love,et al.  Enhanced Lithiation Cycle Stability of ALD-Coated Confined a-Si Microstructures Determined Using In Situ AFM. , 2016, ACS applied materials & interfaces.

[121]  S. Dayeh,et al.  Engineering Heteromaterials to Control Lithium Ion Transport Pathways , 2015, Scientific Reports.

[122]  K. Terada,et al.  Development of In Situ Cross-Sectional Raman Imaging of LiCoO2 Cathode for Li-ion Battery , 2015 .

[123]  W. Han,et al.  In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes. , 2015, ACS applied materials & interfaces.

[124]  Jiaqiang Huang,et al.  In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe 3 O 4 nanocrystal/carbon nanofiber composite electrodes , 2015 .

[125]  W. Schuhmann,et al.  Scanning electrochemical microscopy of Li-ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[126]  J. Janek,et al.  Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging , 2015, Scientific Reports.

[127]  X. Bai,et al.  Real-time Observation of Deep Lithiation of Tungsten Oxide Nanowires by In Situ Electron Microscopy. , 2015, Angewandte Chemie.

[128]  N. Imanishi,et al.  In-operando FTIR Spectroscopy for Composite Electrodes of Lithium-ion Batteries , 2015 .

[129]  W. Chueh,et al.  Tracking Non‐Uniform Mesoscale Transport in LiFePO4 Agglomerates During Electrochemical Cycling , 2015 .

[130]  W. Schuhmann,et al.  Combined AFM/SECM Investigation of the Solid Electrolyte Interphase in Li‐Ion Batteries , 2015 .

[131]  Evan M. Erickson,et al.  Li+‐Ion Extraction/Insertion of Ni‐Rich Li1+x(NiyCozMnz)wO2 (0.005 , 2015 .

[132]  Jiangwei Wang,et al.  High damage tolerance of electrochemically lithiated silicon , 2015, Nature Communications.

[133]  Jonathan P. Wright,et al.  Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling , 2015, Nature Communications.

[134]  Claire Villevieille,et al.  Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries , 2015, Nature Communications.

[135]  N. Sharma,et al.  In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries. , 2015, ChemSusChem.

[136]  Y. Orikasa,et al.  Solid Solution Domains at Phase Transition Front of LixNi0.5Mn1.5O4 , 2015 .

[137]  W. Schuhmann,et al.  In-operando evaluation of the effect of vinylene carbonate on the insulating character of the solid electrolyte interphase , 2015 .

[138]  Li Lu,et al.  In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques. , 2015, Physical chemistry chemical physics : PCCP.

[139]  Phl Peter Notten,et al.  In situ methods for Li-ion battery research : a review of recent developments , 2015 .

[140]  A. Salehi,et al.  Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[141]  M. Wagemaker,et al.  Direct Observation of Li‐Ion Transport in Electrodes under Nonequilibrium Conditions Using Neutron Depth Profiling , 2015 .

[142]  Y. Chiang,et al.  XANES Investigation of Dynamic Phase Transition in Olivine Cathode for Li‐Ion Batteries , 2015 .

[143]  Xiqian Yu,et al.  Probing Reversible Multielectron Transfer and Structure Evolution of Li1.2Cr0.4Mn0.4O2 Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V , 2015 .

[144]  Haimei Zheng,et al.  In Situ Study of Lithiation and Delithiation of MoS2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. , 2015, Nano letters.

[145]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[146]  K. Wiaderek,et al.  Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity. , 2015, The journal of physical chemistry letters.

[147]  Daniel A. Cogswell,et al.  Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO4 Particles Revealed through Nanoscale Operando State‐of‐Charge Imaging , 2015 .

[148]  M. Ishikawa,et al.  In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. , 2015, Microscopy.

[149]  Danna Qian,et al.  Advanced analytical electron microscopy for lithium-ion batteries , 2015 .

[150]  P. Novák,et al.  Understanding Inhomogeneous Reactions in Li‐Ion Batteries: Operando Synchrotron X‐Ray Diffraction on Two‐Layer Electrodes , 2015, Advanced science.

[151]  O. Dolotko,et al.  Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite , 2015 .

[152]  L. Wan,et al.  In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. , 2015, ACS applied materials & interfaces.

[153]  Pengfei Yan,et al.  Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. , 2015, ACS nano.

[154]  Young-Sang Yu,et al.  Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging , 2015, Nature Communications.

[155]  Jun Lu,et al.  Asynchronous Crystal Cell Expansion during Lithiation of K(+)-Stabilized α-MnO2. , 2015, Nano letters.

[156]  Yi-sheng Liu,et al.  Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science , 2015 .

[157]  Yijin Liu,et al.  Nonequilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution , 2015 .

[158]  W. Schuhmann,et al.  Scanning Electrochemical Microscopy Applied to the Investigation of Lithium (De-)Insertion in TiO2 , 2015 .

[159]  W. Schuhmann,et al.  Determination of the formation and range of stability of the SEI on glassy carbon by local electrochemistry , 2015 .

[160]  J. Sullivan,et al.  Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. , 2015, ACS nano.

[161]  Fiona C. Strobridge,et al.  Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO4-Electrodes in a Standard Coin Cell Battery , 2015 .

[162]  Karim Zaghib,et al.  New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈. , 2015, Nano letters.

[163]  L. Wan,et al.  Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy , 2015 .

[164]  P. Novák,et al.  Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X‐Ray Tomography and Diffraction , 2015, Advanced materials.

[165]  Y. S. Meng,et al.  Topological defect dynamics in operando battery nanoparticles , 2015, Science.

[166]  J. Dai,et al.  In Situ Investigations of Li‐MoS2 with Planar Batteries , 2015 .

[167]  M. Toney,et al.  Emerging In Situ and Operando Nanoscale X‐Ray Imaging Techniques for Energy Storage Materials , 2015 .

[168]  Nina Balke,et al.  Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. , 2015, Nano letters.

[169]  B. L. Mehdi,et al.  Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. , 2015, Nano letters.

[170]  K. Komvopoulos,et al.  A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy. , 2015, Journal of the American Chemical Society.

[171]  Donovan Leonard,et al.  In situ SEM study of lithium intercalation in individual V2O5 nanowires. , 2015, Nanoscale.

[172]  M. Doeff,et al.  Transitions from near-surface to interior redox upon lithiation in conversion electrode materials. , 2015, Nano letters.

[173]  V. K. Peterson,et al.  A custom battery for operando neutron powder diffraction studies of electrode structure , 2015 .

[174]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[175]  Haoshen Zhou,et al.  Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. , 2015, ACS nano.

[176]  Yi Cui,et al.  In situ observation of divergent phase transformations in individual sulfide nanocrystals. , 2015, Nano letters.

[177]  G. Schütz,et al.  Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery , 2015, Nature Communications.

[178]  W. West,et al.  High energy xLi2MnO3–(1−x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries , 2015 .

[179]  Andreas Jossen,et al.  Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction , 2014 .

[180]  Xiqian Yu,et al.  Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. , 2014, ACS applied materials & interfaces.

[181]  Dong Wang,et al.  Facet dependent SEI formation on the LiNi(0.5)Mn(1.5)O4 cathode identified by in situ single particle atomic force microscopy. , 2014, Chemical communications.

[182]  Yu‐Guo Guo,et al.  Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. , 2014, ACS applied materials & interfaces.

[183]  Zhenyu Wang,et al.  Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. , 2014, Nano letters.

[184]  Marnix Wagemaker,et al.  Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. , 2014, Journal of the American Chemical Society.

[185]  Da Deng,et al.  In-situ investigation of solid-electrolyte interphase formation on the anode of Li-ion batteries with Atomic Force Microscopy , 2014 .

[186]  J. Toca-Herrera,et al.  Looking at cell mechanics with atomic force microscopy: Experiment and theory , 2014, Microscopy research and technique.

[187]  Meng Gu,et al.  In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. , 2014, ACS nano.

[188]  Christian Masquelier,et al.  Li-Rich Li1+xMn2–xO4 Spinel Electrode Materials: An Operando Neutron Diffraction Study during Li+ Extraction/Insertion , 2014 .

[189]  Xiao‐Qing Yang,et al.  In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability , 2014, Scientific Reports.

[190]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[191]  Zachary J. Barton,et al.  Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media. , 2014, Analytical chemistry.

[192]  David L Wood,et al.  In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4. , 2014, ACS applied materials & interfaces.

[193]  A. Riahi,et al.  Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes – SEI formation and graphite damage mechanisms , 2014 .

[194]  G. Wittstock,et al.  Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. , 2014, Angewandte Chemie.

[195]  Marcello Canova,et al.  In situ quantification and visualization of lithium transport with neutrons. , 2014, Angewandte Chemie.

[196]  Farzad Mashayek,et al.  Lithiation-induced shuffling of atomic stacks. , 2014, Nano letters.

[197]  Jörg Maser,et al.  Nonequilibrium structural dynamics of nanoparticles in LiNi(1/2)Mn(3/2)O4 cathode under operando conditions. , 2014, Nano letters.

[198]  Ying Shirley Meng,et al.  Single particle nanomechanics in operando batteries via lensless strain mapping. , 2014, Nano letters.

[199]  Jun Wang,et al.  In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy , 2014, Nature Communications.

[200]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[201]  Alireza Kargar,et al.  In situ TEM observation of the structural transformation of rutile TiO₂ nanowire during electrochemical lithiation. , 2014, Chemical communications.

[202]  C. Kübel,et al.  Electrochemical Delithiation/Relithiation of LiCoPO4: A Two-Step Reaction Mechanism Investigated by in Situ X-ray Diffraction, in Situ X-ray Absorption Spectroscopy, and ex Situ 7Li/31P NMR Spectroscopy , 2014 .

[203]  Ji‐Guang Zhang,et al.  Bending-induced symmetry breaking of lithiation in germanium nanowires. , 2014, Nano letters.

[204]  Yi Cui,et al.  In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles , 2014 .

[205]  Chih-Wei Hu,et al.  Structural evolution in LiFePO4-based battery materials: in-situ and ex-situ time-of-flight neutron diffraction study , 2014 .

[206]  Zonghai Chen,et al.  Probing thermally induced decomposition of delithiated Li(1.2-x)Ni(0.15)Mn(0.55)Co(0.1)O2 by in situ high-energy X-ray diffraction. , 2014, ACS applied materials & interfaces.

[207]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[208]  Jang Wook Choi,et al.  Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. , 2014, ACS nano.

[209]  Xiao Hua,et al.  Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery , 2014 .

[210]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[211]  W. West,et al.  Investigations on Electrochemical Behavior and Structural Stability of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-Ion Cathodes via in-Situ and ex-Situ Raman Spectroscopy , 2014 .

[212]  John Rick,et al.  In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes , 2014 .

[213]  Xiaofeng Qian,et al.  In situ observation of random solid solution zone in LiFePO₄ electrode. , 2014, Nano letters.

[214]  Helmut Ehrenberg,et al.  Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction , 2014 .

[215]  Y. Iriyama,et al.  In-Situ Electron Microscope Observations of Electrochemical Li Deposition/Dissolution with a LiPON Electrolyte , 2014 .

[216]  Hajime Arai,et al.  Improved Cyclic Performance of Lithium-Ion Batteries: An Investigation of Cathode/Electrolyte Interface via In Situ Total-Reflection Fluorescence X-ray Absorption Spectroscopy , 2014 .

[217]  Jiajun Wang,et al.  In situ three-dimensional synchrotron X-Ray nanotomography of the (de)lithiation processes in tin anodes. , 2014, Angewandte Chemie.

[218]  M. Hirayama,et al.  Development of Spectroelectrochemical Cells for in situ Neutron Reflectometry , 2014 .

[219]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[220]  Lin Gu,et al.  Understanding the Rate Capability of High‐Energy‐Density Li‐Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials , 2014 .

[221]  H. Xin,et al.  Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. , 2014, Nano letters.

[222]  Neeraj Sharma,et al.  Lithium migration in Li4Ti5O12 studied using in-situ neutron powder diffraction , 2014 .

[223]  R. G. Downing,et al.  Profiling lithium distribution in Sn anode for lithium-ion batteries with neutrons , 2014, Journal of Radioanalytical and Nuclear Chemistry.

[224]  Gilbert M. Brown,et al.  Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices , 2014, Microscopy and Microanalysis.

[225]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[226]  Y. Chiang,et al.  Extended solid solutions and coherent transformations in nanoscale olivine cathodes. , 2014, Nano letters.

[227]  Jian Xie,et al.  Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells. , 2014, ACS applied materials & interfaces.

[228]  Ying Shirley Meng,et al.  Nanoscale strain mapping in battery nanostructures , 2014 .

[229]  Karim Zaghib,et al.  In situ Scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries , 2014 .

[230]  Marcello Canova,et al.  Neutron depth profiling of Li-ion cell electrodes with a gas-controlled environment , 2014 .

[231]  K. Edström,et al.  New in-situ neutron diffraction cell for electrode materials , 2014 .

[232]  Kang Xu,et al.  In situ and quantitative characterization of solid electrolyte interphases. , 2014, Nano letters.

[233]  L. Luo,et al.  Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM , 2014, Scientific Reports.

[234]  Jian Xie,et al.  In situ transmission electron microscopy observation of electrochemical behavior of CoS(2) in lithium-ion battery. , 2014, ACS applied materials & interfaces.

[235]  Donald R. Baer,et al.  Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries , 2014, Scientific Reports.

[236]  Claire Villevieille,et al.  Novel electrochemical cell designed for operando techniques and impedance studies , 2014 .

[237]  Neeraj Sharma,et al.  Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction , 2013 .

[238]  Neeraj Sharma,et al.  A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction , 2013 .

[239]  Takashi Hattori,et al.  Dynamic in situ fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery , 2013 .

[240]  Xiao Hua,et al.  Origin of additional capacities in metal oxide lithium-ion battery electrodes. , 2013, Nature materials.

[241]  Kathleen A. Schwarz,et al.  Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. , 2013, Nano letters.

[242]  Jun Zhang,et al.  In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes. , 2013, ACS nano.

[243]  James E. Evans,et al.  Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. , 2013, Nano letters.

[244]  Yoshifumi Oshima,et al.  In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn2O4 Nanowire Battery , 2013 .

[245]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[246]  Claire Villevieille,et al.  Electrochemical activation of Li2MnO3 at elevated temperature investigated by in situ Raman microscopy , 2013 .

[247]  A. Manthiram,et al.  In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge , 2013, Nanotechnology.

[248]  Ying Shirley Meng,et al.  In-situ neutron diffraction study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling , 2013 .

[249]  Yang Liu,et al.  Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. , 2013, Nano letters.

[250]  Jian Yu Huang,et al.  In Situ Atomic‐Scale Imaging of Phase Boundary Migration in FePO4 Microparticles During Electrochemical Lithiation , 2013, Advanced materials.

[251]  Tetsuya Tsuda,et al.  In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. , 2013, Physical chemistry chemical physics : PCCP.

[252]  Z. Hussain,et al.  Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy , 2013, Nature Communications.

[253]  Kiyoshi Kanamura,et al.  In-situ Fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO4 cathode , 2013 .

[254]  W. Schuhmann,et al.  In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. , 2013, Chemical communications.

[255]  S. T. Picraux,et al.  Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale. , 2013, Nano letters.

[256]  Petr Novák,et al.  Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy , 2013 .

[257]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[258]  Stephen J. Harris,et al.  In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction , 2013 .

[259]  Hajime Arai,et al.  Phase transition kinetics of LiNi0.5Mn1.5O4 electrodes studied by in situ X-ray absorption near-edge structure and X-ray diffraction analysis , 2013 .

[260]  D. Scherson,et al.  In-Situ, Time-Resolved Raman Spectro-Micro-Topography of an Operating Lithium Ion Battery , 2013 .

[261]  Daniel P. Abraham,et al.  Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy , 2013 .

[262]  Jun Chen,et al.  Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites , 2013 .

[263]  Meng Gu,et al.  Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. , 2013, ACS nano.

[264]  Yang Liu,et al.  In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. , 2013, ACS nano.

[265]  Jun Wang,et al.  In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging. , 2013, Chemical communications.

[266]  Farzad Mashayek,et al.  Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. , 2013, ACS nano.

[267]  K. Chapman,et al.  Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays. , 2013, Physical chemistry chemical physics : PCCP.

[268]  Jun Lu,et al.  (De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. , 2013, Journal of the American Chemical Society.

[269]  O Schneider,et al.  Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[270]  Y. Orikasa,et al.  Direct observation of a metastable crystal phase of Li(x)FePO4 under electrochemical phase transition. , 2013, Journal of the American Chemical Society.

[271]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[272]  C. Grey,et al.  Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy. , 2013, Journal of the American Chemical Society.

[273]  Hikari Sakaebe,et al.  In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface , 2013 .

[274]  Z. Chao,et al.  Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD , 2013 .

[275]  Li Lu,et al.  Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. , 2013, ACS nano.

[276]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[277]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[278]  K. Wiaderek,et al.  The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements , 2012 .

[279]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[280]  P. Bruce,et al.  Lithium insertion into anatase nanotubes , 2012 .

[281]  A. Hollenkamp,et al.  Rapid SECM probing of dissolution of LiCoO2 battery materials in an ionic liquid , 2012 .

[282]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[283]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[284]  Xiqian Yu,et al.  High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. , 2012, Chemical communications.

[285]  Wei Zhang,et al.  Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction , 2012, Scientific Reports.

[286]  Z. Suo,et al.  Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. , 2012, ACS nano.

[287]  M. Wagemaker,et al.  Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. , 2012, ACS nano.

[288]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[289]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[290]  Yong‐Sheng Hu,et al.  Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations. , 2012, Journal of the American Chemical Society.

[291]  D. Muller,et al.  In Situ Electron Energy-Loss Spectroscopy in Liquids , 2012, Microscopy and Microanalysis.

[292]  Jon P. Owejan,et al.  Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry , 2012 .

[293]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[294]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[295]  S. Indris,et al.  Chemical and electrochemical insertion of Li into the spinel structure of CuCr2Se4: ex situ and in situ observations by X-ray diffraction and scanning electron microscopy. , 2012, Physical chemistry chemical physics : PCCP.

[296]  Yi Cui,et al.  The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation , 2012 .

[297]  N. Sharma,et al.  Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. , 2012, Journal of the American Chemical Society.

[298]  Tianyou Zhai,et al.  Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. , 2012, Chemical communications.

[299]  A. Bard,et al.  Scanning Electrochemical Microscopy, Second Edition , 2012 .

[300]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[301]  Hong Li,et al.  Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. , 2012, Nano letters.

[302]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[303]  Jun-tao Li,et al.  In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. , 2012, Accounts of chemical research.

[304]  G. Amatucci,et al.  Tracking lithium transport and electrochemical reactions in nanoparticles , 2012, Nature Communications.

[305]  T. Abe,et al.  In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries , 2011 .

[306]  Niels de Jonge,et al.  Electron microscopy of specimens in liquid. , 2011, Nature nanotechnology.

[307]  Ahmet T. Alpas,et al.  A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells , 2011 .

[308]  Guang Zhu,et al.  Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. , 2011, Nano letters.

[309]  Neeraj Sharma,et al.  In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery , 2011 .

[310]  H. Ghassemi,et al.  In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. , 2011, ACS nano.

[311]  P. Notten,et al.  In Situ Neutron Depth Profiling: A Powerful Method to Probe Lithium Transport in Micro‐Batteries , 2011, Advanced materials.

[312]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[313]  Yang Liu,et al.  In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. , 2011, Nano letters.

[314]  Brandon R. Long,et al.  Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment , 2011 .

[315]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[316]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[317]  Di Chen,et al.  In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid , 2011 .

[318]  Stephen J. Harris,et al.  Direct measurement of lithium transport in graphite electrodes using neutrons , 2011 .

[319]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[320]  K. Zaghib,et al.  SiO –graphite as negative for high energy Li-ion batteries , 2011 .

[321]  Roger W. Falcone,et al.  New directions in X-ray microscopy , 2011 .

[322]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[323]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[324]  Anna G. Stefanopoulou,et al.  Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery , 2011 .

[325]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[326]  Dongjie Wang,et al.  Design and comparison of ex situ and in situ devices for Raman characterization of lithium titanate anode material , 2011 .

[327]  Neeraj Sharma,et al.  Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in situ neutron diffraction study , 2010 .

[328]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[329]  Rita Baddour-Hadjean,et al.  Raman microspectrometry applied to the study of electrode materials for lithium batteries. , 2010, Chemical reviews.

[330]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[331]  Doron Aurbach,et al.  In Situ FTIR Spectroscopy Study of Li / LiNi0.8Co0.15Al0.05O2 Cells with Ionic Liquid-Based Electrolytes in Overcharge Condition , 2010 .

[332]  M. Wagemaker,et al.  Size effects in the Li(4+x)Ti(5)O(12) spinel. , 2009, Journal of the American Chemical Society.

[333]  Rita Baddour-Hadjean,et al.  In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films , 2009 .

[334]  R. Harder,et al.  Coherent X-ray diffraction imaging of strain at the nanoscale. , 2009, Nature materials.

[335]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[336]  Chang Ming Li,et al.  Lithium Insertion in Channel-Structured β-AgVO3: In Situ Raman Study and Computer Simulation , 2007 .

[337]  P. Novák,et al.  A multi-sample automatic system for in situ electrochemical X-ray diffraction synchrotron measurements. , 2007, Journal of synchrotron radiation.

[338]  P. Novák,et al.  Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation , 2007 .

[339]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[340]  Michael Holzapfel,et al.  An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite , 2006 .

[341]  K. Möller,et al.  Monitoring dynamics of electrode reactions in Li-ion batteries by in situ ESEM , 2006 .

[342]  R. Frech,et al.  Modified Coin Cells for In situ Raman Spectroelectrochemical Measurements of Li x V2O5 for Lithium Rechargeable Batteries , 2006, Applied spectroscopy.

[343]  M. Dresselhaus,et al.  In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. , 2006, Small.

[344]  W. Plieth,et al.  Studying lithium intercalation into graphite particles via in situ Raman spectroscopy and confocal microscopy , 2005 .

[345]  Robert Kostecki,et al.  In situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode. , 2005, The journal of physical chemistry. B.

[346]  I. Uchida,et al.  Raman spectro-electrochemistry of LiCoxMn2−xO4 thin film electrodes for 5 V lithium batteries , 2004 .

[347]  M. Wagemaker,et al.  Nano-morphology of lithiated thin film TiO2 anatase probed with in situ neutron reflectometry , 2003 .

[348]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[349]  I. Uchida,et al.  In situ Raman spectroscopic studies of LiNixMn2 − xO4 thin film cathode materials for lithium ion secondary batteries , 2002 .

[350]  Daniel A. Scherson,et al.  In Situ, Real-Time Raman Microscopy of Embedded Single Particle Graphite Electrodes , 2002 .

[351]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[352]  Takashi Itoh,et al.  Spectroelectrochemical studies on highly polarized LiCoO2 electrode in organic solutions , 2000 .

[353]  Petr Novák,et al.  Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries , 2000 .

[354]  R. Frech,et al.  In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes , 1999 .

[355]  Jean-Marie Tarascon,et al.  In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries , 1998 .

[356]  L. Servant,et al.  Raman Spectroelectrochemistry of a Lithium/Polymer Electrolyte Symmetric Cell , 1998 .

[357]  Karim Zaghib,et al.  Electrochemistry of Anodes in Solid‐State Li‐Ion Polymer Batteries , 1998 .

[358]  I. Uchida,et al.  In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems , 1997 .

[359]  J. Dahn,et al.  A Cell for In Situ X‐Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology , 1997 .

[360]  M. Inaba,et al.  In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures , 1996 .

[361]  E. Siebert,et al.  Correlations between structural and electrical properties of BaCeO3 studied by coupled in-situ Raman scattering and impedance spectroscopy , 1995 .

[362]  M. Armand,et al.  In situ observation by SEM of positive composite electrodes during discharge of polymer lithium batteries , 1988 .

[363]  M. Delhaye,et al.  Raman microprobe and microscope with laser excitation , 1975 .

[364]  L. Danis,et al.  Nanoscale Measurements of Lithium Ion Battery Materials Using Scanning Probe Techniques , 2017 .

[365]  Rujia Zou,et al.  A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Li‐Ion Batteries , 2017 .

[366]  R. Qiao,et al.  Soft x-ray spectroscopy for probing electronic and chemical states of battery materials , 2015 .

[367]  G. Wittstock,et al.  In Situ Quantification of the Swelling of Graphite Composite Electrodes by Scanning Electrochemical Microscopy , 2016 .

[368]  S. Dillon,et al.  In Situ Scanning Electron Microscopy Characterization of the Mechanism for Li Dendrite Growth , 2016 .

[369]  Eduardo D. Sardinha,et al.  Investigation of the Electron Transfer at Si Electrodes: Impact and Removal of the Native SiO2 Layer , 2016 .

[370]  C. G. Zoski Review—Advances in Scanning Electrochemical Microscopy (SECM) , 2016 .

[371]  Daniel Alves Dalla Corte,et al.  Spectroscopic Insight into Li‐Ion Batteries during Operation: An Alternative Infrared Approach , 2016 .

[372]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[373]  N. Yao,et al.  Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery , 2015 .

[374]  G. Wittstock,et al.  Comparison of Electron Transfer Properties of the SEI on Graphite Composite and Metallic Lithium Electrodes by SECM at OCP , 2015 .

[375]  Petr Novák,et al.  Combined In Situ Raman and IR Microscopy at the Interface of a Single Graphite Particle with Ethylene Carbonate/Dimethyl Carbonate , 2014 .

[376]  Ke An,et al.  An In-Situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-Ion Batteries , 2014 .

[377]  Christian Masquelier,et al.  A New Null Matrix Electrochemical Cell for Rietveld Refinements of In-Situ or Operando Neutron Powder Diffraction Data , 2013 .

[378]  T. Nishi,et al.  Visualization of the State-of-Charge Distribution in a LiCoO2 Cathode by In Situ Raman Imaging , 2013 .

[379]  Simona Badilescu,et al.  In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview , 2013, Journal of Applied Electrochemistry.

[380]  Anna G. Stefanopoulou,et al.  Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging , 2013 .

[381]  Claire Villevieille,et al.  Circular in situ neutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries , 2013 .

[382]  Fan Xu,et al.  In situ electrochemical studies for Li+ ions dissociation from the LiCoO2 electrode by the substrate-generation/tip-collection mode in SECM , 2011, Journal of Solid State Electrochemistry.

[383]  A. E. O'Neill,et al.  In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode , 2009 .

[384]  Z. Jiang,et al.  Infrared Spectroscopy , 2022 .

[385]  Minoru Inaba,et al.  In situ Raman study on electrochemical Li intercalation into graphite , 1995 .

[386]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[387]  M. Delhaye,et al.  Time and/or space resolved laser Raman spectroscopy , 1982 .