The G2 and C2 rational quadratic trigonometric Bézier curve with two shape parameters with applications

The rational quadratic trigonometric Bezier curve with two shape parameters is presented in this paper, which is new in literature. The purposed curve inherits all the geometric properties of the traditional rational quadratic Bezier curve. The presence of shape parameters provides a control on the shape of the curve more than that of traditional Bezier curve. Moreover the weight offers an additional control on the curve. Simple constraints for shape parameters are derived using the end points curvature so that their values always fall within the defined range. The composition of two segments of curve using G^2 and C^2 continuity is given. The new curves can accurately represent some conics and best approximates the traditional rational quadratic Bezier curve.

[1]  Lanlan Yan,et al.  An extension of the Bézier model , 2011, Appl. Math. Comput..

[2]  Muhammad Abbas,et al.  Monotonicity-preserving C2 rational cubic spline for monotone data , 2012, Appl. Math. Comput..

[3]  Huayong Liu,et al.  Study on a Class of TC-Bezier Curve with Shape Parameters ★ , 2011 .

[4]  Muhammad Abbas,et al.  Positivity-preserving C2 rational cubic spline interpolation , 2013 .

[5]  Xi-An Han,et al.  The cubic trigonometric Bézier curve with two shape parameters , 2009, Appl. Math. Lett..

[6]  Muhammad Sarfraz,et al.  Positive data modeling using spline function , 2010, Appl. Math. Comput..

[7]  Xuli Han,et al.  Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..

[8]  Muhammad Abbas,et al.  Spur Gear Tooth Design with S-Shaped Transition Curve using T-Bézier Function , 2012 .

[9]  Muhammad Abbas,et al.  Spur Gear Tooth Design and Transition Curve as a Spiral Using Cubic Trigonometric Bezier Function , 2011, 2011 Eighth International Conference Computer Graphics, Imaging and Visualization.

[10]  Muhammad Abbas,et al.  The Quadratic Trigonometric Bézier Curve with Single Shape Parameter , 2012 .

[11]  Xiaoqin Wu,et al.  Quadratic Trigonometric Spline Curves with Multiple Shape Parameters , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[12]  Ahmad Abdul Majid,et al.  An Automatic Generation of G^1 Curve Fitting of Arabic Characters , 2006, International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06).

[13]  Xuli Han,et al.  Piecewise quadratic trigonometric polynomial curves , 2003, Math. Comput..

[14]  Xiaoyan Chen,et al.  An approximation method to circular arcs , 2012, Appl. Math. Comput..

[15]  Muhammad Sarfraz,et al.  Automatic outline capture of Arabic fonts , 2002, Inf. Sci..

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[17]  Xi-An Han,et al.  Shape analysis of cubic trigonometric Bézier curves with a shape parameter , 2010, Appl. Math. Comput..

[18]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[19]  Xuli Han,et al.  Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..