Thermotaxis and protoplasmic oscillations inPhysarum plasmodia analysed in a novel device generating stable linear temperature gradients

SummaryThe application of sublethal temperature gradients offers a simple, non-invasive means for in vivo studies of thermotaxis and other temperature-dependent processes in various organisms. Development, for instance, can be dramatically desynchronized, and the resulting development gradients allow to analyze physiological inter-dependencies between locally separated subsystems. For this purpose a simple device has been developed, by which a stable linear gradient of 8 °C/cm is established on an inert metal sheet with the aid of Peltier elements. The effects of linear temperature gradients on fusion, growth, and migration of plasmodia of the slime moldPhysarum polycephalum was filmed by 16 mm film time-lapse technique, and their local contraction—relaxation cycles analysed by “multistrip kymography”, which represents a graphic documentation of the spatio-temporal pattern of protoplasmic movements that occur along well-defined regions within the giant cell.Physarum plasmodia preferentially fuse, and grow, in the range of 24–26 °C. Different parts of a single macroplasmodium can simultaneously show positive and negative thermotaxis. The contraction—relaxation cycles generating the protoplasmic shuttle streaming within the network of veins essentially depend on local temperatures and are instantaneously desynchronized by the temperature gradient. Thus they cannot be controlled by a central pacemaker or an overall electric signal. However, there is a strong tendency to locally synchronize the various oscillation frequencies present within the giant cell if temperature differences do not exceed 2 °C.

[1]  J. Daniel,et al.  The pure culture of Physarum polycephalum on a partially defined soluble medium. , 1961, Journal of general microbiology.

[2]  J. Daniel,et al.  Chapter 2 Methods of Culture for Plasmodial Myxomycetes , 1964 .

[3]  B. C. Abbott,et al.  Potentials and ionic exchange in slime mold plasmodia. , 1968, Comparative biochemistry and physiology.

[4]  W. Tso,et al.  Thermotaxis in a slime mold, Physarum polycephalum. , 1975, Behavioral Biology.

[5]  K. Wohlfarth-Bottermann,et al.  Oscillating contractions in protoplasmic strands of Physarum: simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence. , 1977, The Journal of experimental biology.

[6]  M. Carlile,et al.  Growth and migration of plasmodia of the myxomycete Physarum polycephalum: the effect of carbohydrates, including agar. , 1978, Journal of general microbiology.

[7]  A. Grębecki,et al.  Plasmodium of Physarum polycephalum as a synchronous contractile system. , 1978, Cytobiologie.

[8]  N. Hülsmann,et al.  [Spatio-temporal analysis of contraction dependent surface movements in Physarum polycephalum (author's transl)]. , 1978, Cytobiologie.

[9]  N. Hülsmann,et al.  Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum. , 1978, Cytobiologie.

[10]  K. Wohlfarth-Bottermann,et al.  Oscillating Contractions in Protoplasmic Strands of Physarum: Mechanical and Thermal Methods of Phase Shifting for Studying the Nature of the Synchronizing Factor and its Transmission , 1980 .

[11]  H. Sauer,et al.  CHAPTER 13 – Time-Lapse Analysis of Mitosis in Vivo in Macroplasmodia of Physarum polycephalum , 1982 .

[12]  A. Grębecki,et al.  Contraction and streaming relations recorded simultaneously at two points along the plasmodial veins and frontal channels of Physarum polycephalum , 1983 .

[13]  W. Haas,et al.  Host identification by Schistosoma japonicum cercariae. , 1987, The Journal of parasitology.

[14]  Choate Jw,et al.  A non-cycling mitotic cyclin in the naturally synchronous cell cycle of Physarum polycephalum. , 1994 .

[15]  K. Brix,et al.  Analysis of Microfilament Organization and Contractile Activities in Physarum , 1994 .

[16]  W. Haas Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success , 1994, Parasitology.

[17]  I. Giaever,et al.  A novel electrical method to study plasmodial contractions in Physarum. Synchrony and temperature dependence , 1995 .

[18]  R. Entzeroth,et al.  Monoclonal antibodies against cystozoites of Sarcocystis muris (Protozoa, Apicomplexa) , 2004, Parasitology Research.

[19]  J. Niemuth,et al.  Developmental asynchrony caused by steep temperature gradients does not impair pattern formation in the wasp, Pimpla turionellae L. , 1995, Roux's archives of developmental biology.

[20]  U. Achenbach,et al.  Synchronization and signal transmission in protoplasmic strands of Physarum , 1981, Planta.

[21]  R. Wolf,et al.  Artifical rearrangements of insect ooplasm caused by fixation, and their microkymographic recording , 1976, Wilhelm Roux's archives of developmental biology.

[22]  Kai Wolf,et al.  Aufbau und Aufrechterhaltung steiler Temperaturgradienten in entwicklungsbiologischen Objekten bei gleichzeitiger lichtmikroskopischer Filmregistrierung , 1974, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[23]  R. Wolf Migration and division of cleavage nuclei in the gall midge,Wachtliella persicariae , 1980, Wilhelm Roux's archives of developmental biology.

[24]  A. Grębecki,et al.  Dynamics of the ectoplasmic walls during pulsation of plasmodial veins ofPhysarum polycephalum , 1978, Protoplasma.

[25]  A. Grębecki,et al.  Correlation of contractile activity and of streaming direction between branching veins ofPhysarum polycephalum plasmodium , 1978, Protoplasma.

[26]  I. Giaever,et al.  Patterns of oscillation during mitosis in plasmodia ofPhysarum polycephalum , 1995, Protoplasma.

[27]  W. Sachsenmaier,et al.  Protoplasmic streaming inPhysarum polycephalum , 1973, Protoplasma.

[28]  B. Ware,et al.  A study of protoplasmic streaming inPhysarum by laser Doppler spectroscopy , 1977, Protoplasma.