AUTOMATIC DIFFERENTIATION TOOLS IN COMPUTATIONAL DYNAMICAL SYSTEMS

In this paper we describe a unified framework for the computation of power series expansions of invariant manifolds and normal forms of vector fields, and estimate the computational cost when applied to simple models. By simple we mean that the model can be written using a finite sequence of compositions of arithmetic operations and elementary functions. In this case, the tools of Automatic Differentiation are the key to produce efficient algorithms. By efficient we mean that the cost of computing the coefficients up to order k of the expansion of a d-dimensional invariant manifold attached to a fix point of a n-dimensional vector field (d = n for normal forms) is proportional to the cost of computing the truncated product of two d-variate power series up to order k. We present actual implementations of some of the algorithms, with special emphasis to the computation of the 4D center manifold of a Lagrangian point of the Restricted Three Body Problem. Mathematics Subject Classification: 34C20,34C30,34C30,34C30,65Pxx,68W30

[1]  Center and Center-(Un)Stable Manifolds of Elliptic-Hyperbolic Fixed Points of 4D-Symplectic Maps. an Example: the Froeschlé Map , 1999 .

[2]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[3]  R. Llave,et al.  The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points , 2007 .

[4]  Carles Simó Effective computations in hamiltonian dynamics , 1996 .

[5]  C. Simó On the analytical and numerical approximation of invariant manifolds. , 1990 .

[6]  À. Haro,et al.  One dimensional invariant manifolds of Gevrey type in real-analytic maps , 2008 .

[7]  Gerard Gómez,et al.  Dynamics and Mission Design Near Libration Points , 2001 .

[8]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[9]  Ernest Fontich Julià,et al.  The parameterization method for invariant manifolds , 2006 .

[10]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[11]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[12]  É. Schost,et al.  Fast Multivariate Power Series Multiplication in Characteristic Zero , 2003 .

[13]  Shane D. Ross,et al.  Theory and Computation of Non-RRKM Lifetime Distributions and Rates in Chemical Systems with Three or More Degrees of Freedom , 2005 .

[14]  Angel Jorba,et al.  A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..

[15]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[16]  Joris van der Hoeven The truncated fourier transform and applications , 2004, ISSAC '04.

[17]  Josep J. Masdemont,et al.  Dynamics in the center manifold of the collinear points of the restricted three body problem , 1999 .

[18]  Marco Bodrato,et al.  Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0 , 2007, WAIFI.

[19]  W. Beyn,et al.  The numerical approximation of center manifolds in Hamiltonian systems , 2003 .

[20]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[21]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[22]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[23]  À. Haro An algorithm to generate canonical transformations: application to normal forms , 2002 .

[24]  Gemma Huguet Casades The role of hyperbolic invariant objects: From Arnold diffusion to biological clocks , 2008 .

[25]  Shane D. Ross,et al.  Connecting orbits and invariant manifolds in the spatial restricted three-body problem , 2004 .

[26]  Rafael de la Llave,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2007, SIAM J. Appl. Dyn. Syst..

[27]  G. Gómez,et al.  The dynamics around the collinear equilibrium points of the RTBP , 2001 .

[28]  À. Haro,et al.  A geometric description of a macroeconomic model with a center manifold , 2009 .

[29]  Joris van der Hoeven,et al.  Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..

[30]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[31]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..

[32]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[33]  John D. Lipson Newton's method: a great algebraic algorithm , 1976, SYMSAC '76.

[34]  Wolf-Jürgen Beyn,et al.  Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.

[35]  Gerard Gómez,et al.  Dynamics and mission design near libration points, advanced methods for collinear points , 2000 .

[36]  G. Gómez,et al.  AAS 07-321 NUMERICAL PARAMETRISATIONS OF LIBRATION POINT TRAJECTORIES AND THEIR INVARIANT MANIFOLDS , 2007 .

[37]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[38]  R. Canosa,et al.  The parameterization method for invariant manifolds III: overview and applications , 2003 .

[39]  Richard D. Neidinger Directions for computing truncated multivariate Taylor series , 2005, Math. Comput..

[41]  E. Castell On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 1999 .

[42]  James Murdock,et al.  Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .