Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science

The objective of this research is to examine the dynamic impact and diffusion patterns at the subfield level. Using a 15-year citation data set, this research reveals the characteristics of the subfields of computer science from the aspects of citation characteristics, citation link characteristics, network characteristics, and their dynamics. Through a set of indicators including incoming citations, number of citing areas, cited/citing ratios, self-citations ratios, PageRank, and betweenness centrality, the study finds that subfields such as Computer Science Applications, Software, Artificial Intelligence, and Information Systems possessed higher scientific trading impact. Moreover, it also finds that Human–Computer Interaction, Computational Theory and Mathematics, and Computer Science Applications are among the subfields of computer science that gained the fastest growth in impact. Additionally, Engineering, Mathematics, and Decision Sciences form important knowledge channels with subfields in computer science.

[1]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[2]  Michel Zitt,et al.  Citing-side normalization of journal impact: A robust variant of the Audience Factor , 2010, J. Informetrics.

[3]  Loet Leydesdorff,et al.  How are new citation-based journal indicators adding to the bibliometric toolbox? , 2009, J. Assoc. Inf. Sci. Technol..

[4]  Ying Ding,et al.  A bird's-eye view of scientific trading: Dependency relations among fields of science , 2012, J. Informetrics.

[5]  Blaise Cronin,et al.  The export of ideas from information science , 1990, J. Inf. Sci..

[6]  K. Knorr-Cetina,et al.  Epistemic cultures : how the sciences make knowledge , 1999 .

[7]  Katherine W. McCain,et al.  Visualizing a Discipline: An Author Co-Citation Analysis of Information Science, 1972-1995 , 1998, J. Am. Soc. Inf. Sci..

[8]  Lokman I. Meho,et al.  The shifting balance of intellectual trade in information studies , 2008, J. Assoc. Inf. Sci. Technol..

[9]  Martin Rosvall,et al.  Maps of Information Flow Reveal Community Structure In Complex Networks , 2007 .

[10]  Wonseok Oh,et al.  Coauthorship Dynamics and Knowledge Capital: The Patterns of Cross-Disciplinary Collaboration in Information Systems Research , 2005, J. Manag. Inf. Syst..

[11]  Mike Thelwall,et al.  Variations between subjects in the extent to which the social sciences have become more interdisciplinary , 2011, J. Assoc. Inf. Sci. Technol..

[12]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[13]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[14]  Cassidy R. Sugimoto,et al.  Institutional interactions: Exploring social, cognitive, and geographic relationships between institutions as demonstrated through citation networks , 2011, J. Assoc. Inf. Sci. Technol..

[15]  Katherine W. McCain,et al.  Visualizing a discipline: an author co-citation analysis of information science, 1972–1995 , 1998 .

[16]  Thed N. van Leeuwen,et al.  Towards a new crown indicator: Some theoretical considerations , 2010, J. Informetrics.

[17]  Andrew Abbott,et al.  Chaos of disciplines , 2001 .

[18]  Loet Leydesdorff,et al.  The delineation of an interdisciplinary specialty in terms of a journal set: The case of communication studies , 2009, J. Assoc. Inf. Sci. Technol..

[19]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[20]  Robert L. Goldstone,et al.  The Import and Export of Cognitive Science , 2006, Cogn. Sci..

[21]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[22]  Santo Fortunato,et al.  Diffusion of scientific credits and the ranking of scientists , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Vincent Larivière,et al.  A bibliometric chronicling of library and information science's first hundred years , 2012, J. Assoc. Inf. Sci. Technol..

[24]  S. Breschi,et al.  Mobility of Skilled Workers and Co-Invention Networks: An Anatomy of Localized Knowledge Flows , 2009 .

[25]  Carl T. Bergstrom,et al.  The Eigenfactor™ Metrics , 2008, The Journal of Neuroscience.

[26]  Ludo Waltman,et al.  PageRank-Related Methods for Analyzing Citation Networks , 2014 .

[27]  Erjia Yan Topic-based Pagerank: toward a topic-level scientific evaluation , 2014, Scientometrics.

[28]  S. Berrol Interdisciplinarity: History, Theory, and Practice , 1992 .

[29]  Ying Ding,et al.  Applying centrality measures to impact analysis: A coauthorship network analysis , 2009, J. Assoc. Inf. Sci. Technol..

[30]  Johan Bollen,et al.  Journal status , 2006, Scientometrics.

[31]  Ronald E. Rice,et al.  The Convergence of Information Science and Communication: A Bibliometric Analysis , 1992, J. Am. Soc. Inf. Sci..

[32]  Katy Börner,et al.  A Multi-Level Systems Perspective for the Science of Team Science , 2010, Science Translational Medicine.

[33]  K. Hyland,et al.  Disciplinary Discourses, Michigan Classics Ed.: Social Interactions in Academic Writing , 2004 .

[34]  Kevin W. Boyack,et al.  Mapping the backbone of science , 2004, Scientometrics.

[35]  B. Kogut,et al.  Localization of Knowledge and the Mobility of Engineers in Regional Networks , 1999 .

[36]  M. Newman Coauthorship networks and patterns of scientific collaboration , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Ludo Waltman,et al.  A new methodology for constructing a publication-level classification system of science , 2012, J. Assoc. Inf. Sci. Technol..

[38]  Blaise Cronin,et al.  Disciplinary Discourses: Social Interactions in Academic Writing , 2002, J. Documentation.

[39]  P. Kivisto Chaos of disciplines , 2002 .

[40]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[41]  Roger Guimerà,et al.  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance , 2005, Science.

[42]  Cassidy R. Sugimoto,et al.  P-Rank: An indicator measuring prestige in heterogeneous scholarly networks , 2011, J. Assoc. Inf. Sci. Technol..

[43]  J. Klein,et al.  Interdisciplinarity: History, Theory, and Practice. , 1991 .

[44]  Erjia Yan,et al.  Finding knowledge paths among scientific disciplines , 2013, J. Assoc. Inf. Sci. Technol..

[45]  Gobinda G. Chowdhury,et al.  Journal as Markers of Intellectual Space: Journal Co-Citation Analysis of Information Retrieval Area, 1987–1997 , 2004, Scientometrics.

[46]  Ludo Waltman,et al.  A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science , 2011, Scientometrics.

[47]  Cassidy R. Sugimoto,et al.  Venue-author-coupling: A measure for identifying disciplines through author communities , 2013, J. Assoc. Inf. Sci. Technol..

[48]  Lokman I. Meho,et al.  Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar , 2007, J. Assoc. Inf. Sci. Technol..