Evidence and Credibility: Full Bayesian Significance Test for Precise Hypotheses

A Bayesian measure of evidence for precise hypotheses is presented. The inte n- tion is to give a Bayesian alternative to significance tests or, equivalently, to p-values. In fact, a set is defined in the parameter space and the posterior probability, its credibility, is evaluated. This set is the "Highest Posterior Density Region" that is "tangent" to the set that defines the null hypothesis. Our measure of evidence is the complement of the credibility of the "tangent" region.

[1]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[2]  M R Whittle,et al.  An unconditional exact test for the Hardy-Weinberg equilibrium law: sample-space ordering using the Bayes factor. , 2001, Genetics.

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  A. W. Marshall,et al.  CLASSES OF DISTRIBUTIONS APPLICABLE IN REPLACEMENT, WITH RENEWAL THEORY IMPLICATIONS, , 1972 .

[5]  M. Aitkin Posterior Bayes Factors , 1991 .

[6]  Carlos Alberto de Bragança Pereira,et al.  ON THE CONCEPT OF P-VALUE , 1988 .

[7]  R. Royall Statistical Evidence: A Likelihood Paradigm , 1997 .

[8]  Carlos Alberto de Bragança Pereira,et al.  BAYESIAN HYPOTHESIS TEST: Using Surface Integrals to Distribute Prior Information Among the Hypotheses , 1995 .

[9]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[10]  I. Good Good Thinking: The Foundations of Probability and Its Applications , 1983 .

[11]  A. Gupta,et al.  A Bayesian Approach to , 1997 .

[12]  D. V. Lindley,et al.  Examples Questioning the Use of Partial Likelihood , 1987 .

[13]  T. Louis,et al.  Unified frequentist and Bayesian testing of a precise hypothesis , 1997 .

[14]  Colin Howson,et al.  The Bayesian Approach , 1998 .

[15]  Christoph W. Ueberhuber,et al.  Computational Integration , 2018, An Introduction to Scientific, Symbolic, and Graphical Computation.

[16]  Telba Z Irony,et al.  Exact tests for equality of two proportions: Fisher × Bayes , 1985 .

[17]  János D. Pintér,et al.  Global optimization in action , 1995 .

[18]  J. Berger,et al.  [Testing Precise Hypotheses]: Rejoinder , 1987 .

[19]  D. Lindley A STATISTICAL PARADOX , 1957 .