Time-domain analysis of quantum states of light: noise characterization and homodyne tomography

We measured the time-domain quantum statistics of a pulsed, high-repetition-rate optical field by balanced homodyne detection. The measuring apparatus discriminates the time scales on which intrinsic quantum fluctuations prevail from those scales for which technical noise is overwhelming. A tomographic reconstruction of weak coherent states with various average photon numbers demonstrates the potential ability of the system to measure high-repetition-rate, time-resolved signals. Possible extensions to other physical situations are discussed.