Abstract The purpose of this paper is to assess the potential of a spaceborne 94-GHz radar for providing useful measurements of the vertical distribution and water content of ice clouds on a global scale. Calculations of longwave (LW) fluxes for a number of model ice clouds are performed. These are used to determine the minimum cloud optical depth that will cause changes in the outgoing longwave radiation or flux divergence within a cloud layer greatear than 10 W m−2, and in surface downward LW flux greater than 5 W m−2, compared to the clear-sky value. These optical depth values are used as the definition of a “radiatively significant” cloud. Different “thresholds of radiative significance” are calculated for each of the three radiation parameters and also for tropical and midlatitude cirrus clouds. Extensive observational datasets of ice crystal size spectra from midlatitude and tropical cirrus are then used to assess the capability of a radar to meet these measurement requirements. A radar with a thres...