Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion

To explore the extent to which functional systems within the human posterior parietal cortex and the superior temporal sulcus are involved in the perception of action, we measured cerebral metabolic activity in human subjects by positron emission tomography during the perception of simulations of biological motion with point-light displays. The experimental design involved comparisons of activity during the perception of goal-directed hand action, whole body motion, object motion, and random motion. The results demonstrated that the perception of scripts of goal-directed hand action implicates the cortex in the intraparietal sulcus and the caudal part of the superior temporal sulcus, both in the left hemisphere. By contrast, the rostrocaudal part of the right superior temporal sulcus and adjacent temporal cortex, and limbic structures such as the amygdala, are involved in the perception of signs conveyed by expressive body movements.

[1]  Karl H. Pribram,et al.  Influence of amygdalectomy on social behavior in monkeys. , 1954, Journal of comparative and physiological psychology.

[2]  H E ROSVOLD,et al.  Influence of amygdalectomy on social behavior in monkeys. , 1954, Journal of comparative and physiological psychology.

[3]  H. Ursin,et al.  Functional localization within the amygdaloid complex in the cat. , 1960, Electroencephalography and clinical neurophysiology.

[4]  R. Myers,et al.  Uncus and amygdala lesions: effects on social behavior in the free-ranging rhesus monkey. , 1968, Science.

[5]  A. Kling,et al.  Uncus and Amiygdala Lesions: Effects on Social Behavior in the Free-Ranging Rhesus Monkey , 1969, Science.

[6]  A. Kling,et al.  Amygdalectomy and social behavior in the caged stump-tailed macaque (Macaca speciosa). , 1971, Folia primatologica; international journal of primatology.

[7]  B. Kaada Stimulation and Regional Ablation of the Amygdaloid Complex with Reference to Functional Representations , 1972 .

[8]  W. Sweet,et al.  Deep Temporal Lobe Stimulation in Man , 1972 .

[9]  M. Mishkin,et al.  Limbic lesions and the problem of stimulus--reinforcement associations. , 1972, Experimental neurology.

[10]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[11]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[12]  D. Kimura,et al.  Motor functions of the left hemisphere. , 1974, Brain : a journal of neurology.

[13]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[14]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[15]  Michael Petrides,et al.  Restricted posterior parietal lesions in the rhesus monkey and performance on visuospatial tasks , 1979, Brain Research.

[16]  R. E. Passingham,et al.  Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta) , 1980, Brain Research.

[17]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[18]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[19]  D. Kimura,et al.  Left-hemisphere control of oral and brachial movements and their relation to communication. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  M. Mishkin A memory system in the monkey. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  P. Gloor,et al.  The role of the limbic system in experiential phenomena of temporal lobe epilepsy , 1982, Annals of neurology.

[22]  M. Raichle,et al.  Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  M. Mintun,et al.  Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[26]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[27]  Tiffany M Field,et al.  The Psychobiology of attachment and separation , 1985 .

[28]  H. D. Steklis,et al.  3 – Neurobiology of Affiliative Behavior in Nonhuman Primates* , 1985 .

[29]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. Jacobson Disorders of facial recognition, social behaviour and affect after combined bilateral amygdalotomy and subcaudate tractotomy — a clinical and experimental study , 1986, Psychological Medicine.

[31]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[32]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[33]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[34]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[35]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[36]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[37]  L. Jakobson,et al.  A neurological dissociation between perceiving objects and grasping them , 1991, Nature.

[38]  D. Pandya,et al.  Post‐rolandic cortical projections of the superior temporal sulcus in the rhesus monkey , 1991, The Journal of comparative neurology.

[39]  Alan C. Evans,et al.  MRI-PET Correlation in Three Dimensions Using a Volume-of-Interest (VOI) Atlas , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[41]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  H. Sakata,et al.  Hand-Movement-Related Neurons of the Posterior Parietal Cortex of the Monkey: Their Role in the Visual Guidance of Hand Movements , 1992 .

[43]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[44]  W. Dittrich Action Categories and the Perception of Biological Motion , 1993, Perception.

[45]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[46]  R. Adolphs,et al.  Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala , 1994, Nature.

[47]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[49]  Hideo Sakata,et al.  Functional properties of rotation-sensitive neurons in the posterior parietal association cortex of the monkey , 1994, Experimental Brain Research.

[50]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[51]  A. Young,et al.  Face processing impairments after amygdalotomy. , 1997, Brain : a journal of neurology.

[52]  M. Petrides,et al.  Neural correlates of mental transformations of the body-in-space. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.