Lambda-Calculi with Explicit Substitutions and Composition Which Preserve Beta-Strong Normalization
暂无分享,去创建一个
[1] Pierre Lescanne,et al. λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.
[2] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.
[3] Alejandro Ríos,et al. Strong Normalization of Substitutions , 1992, MFCS.
[4] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[5] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[6] Inria Rocquencourt,et al. Confluence and Preservation of Strong Normalisation in an Explicit Substitutions Calculus , 1996 .
[7] Jean-Jacques Lévy,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.
[8] de Ng Dick Bruijn,et al. Lambda calculus with namefree formulas involving symbols that represent reference transforming mappings , 1978 .
[9] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[10] Delia Kesner,et al. Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.